

#### The Center for Power Electronics Systems – High Density Integration Research

#### **Dushan Boroyevich**

presented at: Packaging Review On-site Workshop



#### **Center for Power Electronics Systems**

#### **Professors:**

Fred C. Lee, Director Dushan Boroyevich, Co-Director Khai D. T. Ngo Rolando Burgos Qiang Li

#### **Annual Research Expenditures \$4-5 million**

#### Other:

- 1 Adjunct/Affiliate Faculty
- 6 Research Associates
- 4 Full-time Staff
- 2 Part-time Staff
- 14 Visiting Scholars
- 44 Doctoral Students
- **4 Masters Students**





#### What is the Future of Power Electronics?

#### Microelectronics



Moore's Law: "Every 1.5 years the cost of a 'bit' drops 50%."



## **DES** June 7, 2016

Power Electronics



## 2

#### Electric Power



Between 1920 - 1970, every 1.5 years the cost of kWh dropped 5%. Since then it is constant.





#### **Microelectronics** vs. Power Electronics



#### Paradigm Shift #1: Standardization



June 7, 2016

SRC Packaging Review On-site Workshop

db-4

JRC

#### Paradigm Shift #2: Modularization



SRC Packaging Review On-site Workshop

June 7, 2016

db-5

#### Information Processing Paradigm Shift #3: Integration

#### **Product Quality, Reliability, and Cost Factors:**



- Rule-based
- Optimized macrocells
- Standard interfaces
- Hierarchical design
- Batch
   processing
   number
   of
   steps
- Small number of different materials
- Efficient use of materials

#### **Volume Production**

#### **Cost Reduction**





#### Power Processing #3: Integration

#### **Product Quality, Reliability, and Cost Factors:**







#### **Integration in Power Processing !**

#### Or Power Electronics Converter Design in the Last Century

Digital Controller – Digital Interface – Analog Interface – Sensor Interface – Power Supplies –

Gate Drives -

**Power Stage** 





#### **Center for Power Electronics Systems**

A National Science Foundation Engineering Research Center, 1998-2008



**Center for Power Electronics Systems** 

A National Science Foundation Engineering Research Center





#### **Different Approaches to Integration**

#### Integrated Load Converters:

- Low-cost, "intelligent motors"
  - motor as output filter
- Fast power delivery to microprocessors
  - minimum distance to load

#### • Power Distribution Converters:



# Discrete converter Integrated converter

#### Standard-Cell IPEMs:

- Active IPEM
- Passive IPEM
- EMI Filter IPEM





#### **Current Research Areas in CPES**



#### **CPES @ VT Achievement Highlights** (1983 - 2014)

- 295 graduate degrees awarded (136 Ph.D., 159 M.S.)
- Over 3100 technical papers, theses and dissertations
- 245 invention disclosures
- 93 patents awarded
- Almost 100 government- and industry-sponsored research projects
- Over 175 CPES industry members
- 97 invention disclosures reviewed by IPPF (2002-2014)
- 65 IPPF-sponsored patent **applications** (2002 – 2014)

#### **Current year:**

- 84 industry members
- \$2.3M from industry consortium
- \$2.2M from sponsored research
- 17 research sponsors:
  - ABB
  - ARPA-E
  - Boeing
  - Department of Energy
  - **Energy Research Corporation**
  - **GE** Appliances and Light
  - **General Motors**
  - Halliburton
  - Huazhong University of Science & Tech.
  - NBF Tech
  - NSF
  - Office of Naval Research
  - Panasonic
  - Safran
  - Texas Instruments
  - Toyota Motor Engineering Mfg. NA, Inc.
  - United Technologies Aerospace Systems







#### **CPES Industry Consortium**

84 Members

40 PRINCIPAL PLUS MEMBERSHIPS (\$50 K/year)

- Same as Principal Member
- + Membership in a mini-consortium:
  - Guidance on research directions
  - Advance reporting of research results
  - Advance IP information

12 PRINCIPAL MEMBERS (\$30 K/year)

Preferential access to Intellectual Property
Seat on the Industry Advisory Board

25 ASSOCIATE MEMBERS (\$15 K/year)

- Free access to CPES publications, conference, and other information
- Representation on the Industry Advisory Board
- Industry residence and student internship programs
- Discount on short courses and other services

12 AFFILIATE MEMBERS (in-kind contributions or <\$15 K/year)

Free access to some CPES publications and conference

Limited discount on short courses and other services



#### **Power Management Consortium**

















#### Work Scope:

- High performance VRM/POL converters
- High efficiency power architectures for laptops, desktops and servers
- High frequency magnetics characterization and design
- Digital control
- **EMI**
- Solid state lighting
- Power management for PV system
- Power management for battery system
- High-efficiency and high power density power supplies with wide-band-gap power devices

Macroblock

NEC/TOKIN

SONOS







International





#### Mini-Consortium for Wide Band-Gap High-Power Converters & Systems

**Newport News Shipbuilding** A Division of Huntington Ingalls Industries

SRC Packaging Review On-site Workshop

VirginiaTech



**VPTEnergy** 

Systems

June 7, 2016

#### Work Scope:

#### DC and AC Microgrids

- Architectures and design
- Grid-, battery-, PV-, and windinterface converters
- Power management
- Modular Multi-level Converters
  - Modeling, design and control
  - Grid-interface converters
- Power Electronics for **Enhanced Grid** Performance and for Integration of Renewable **Sources and Storage Systems**

eysight

db-16

TEING

ENERGY SSC

HUAWEI

NATIONAL INSTRUMENTS

#### Mini-Consortium for High Density Integration



### SiC Switch Comparative Characterization

| Device                                    | Continuous<br>Current Rating<br>(datasheet) | T <sub>MAX</sub> (datasheet) | Normalized Die<br>Area to Cree<br>MOSFET |
|-------------------------------------------|---------------------------------------------|------------------------------|------------------------------------------|
| Cree SiC MOSFET<br>(C2M0080120D)          | 31.6 A (25 °C);<br>20 A (100 °C)            | 150 °C                       | 1.00                                     |
| Rohm SiC MOSFET<br>(SCH2080KE)            | 35 A (25 °C);<br>22 A (100 °C)              | 150 °C                       | 1.21                                     |
| GE SiC MOSFET<br>(GE12N20L)               | 30 A (25 °C);<br>22.5 A (100 °C)            | 200 °C                       | 0.97                                     |
| Fairchild SiC BJT<br>(FSICBH057A120)      | 15 A                                        | 175 °C                       | 0.64                                     |
| GeneSiC SiC SJT<br>(GA10JT12)             | 6 A (25 °C)                                 | 175 °C                       | 0.33                                     |
| Infineon N-On SiC<br>JFET (IJW120R100T1)  | 26 A (25 °C);<br>10 A (≤ 150 °C)            | 175 °C                       | 1.29                                     |
| SemiSouth N-Off SiC<br>JFET (SJEP120R100) | 17 A (100 °C);<br>10 A (150 °C)             | 150 °C                       | 0.43                                     |





#### SiC Switch Comparative Characterization

## Specific On-Resistance vs. Temperature



#### **Conclusions:**

- All devices have much smaller conduction loss than Si MOSFETs with similar ratings.
- All devices have much smaller switching loss than Si IGBTs with similar ratings.
- All devices operate satisfactorily at temperatures of 200 °C and higher.





## E)

#### SiC Device Characterization and Modeling





June 7, 2016





#### Design of a 0 Ω Gate Drive for 1.2 kV SiC JFET





Vds: 100 x Probe, 2500 V, P5100 Vgs: 10 x Probe, 300 V, P6139A Ids: 0.1 Ω Coaxial Shunt SDN-10









#### Turn-on/off at different temperatures 600 V – 10 A





#### Generations of GaN POL Power Module





SRC Packaging Review On-site Workshop

Advanced Research Proje



#### **PCB Embedded Inductor Substrate**

for 3D Integrated POL Module



Multi-layers PCB substrate with

embedded magnetic layer

$$f_s = 1^2 MHz, V_{in} = 12V, V_{out} = 1.2V, I_{out} = 20A$$





#### Module Design and Manufacture on 4-layer PCB



#### Open loop evaluation motherboard





#### **Power Density Achievement**



June 7, 2016

SRC Packaging Review On-site Workshop

db-26



#### **Demands for High-Power-Density Converters**



#### **Planar Packaging**









#### 250°C Embedded Power



#### **Sintered Bonds**





#### Solder-Free Package



June 7, 2016



#### **Bi-directional Battery Charger for PHEV** with MHz GaN Converter

3.3 kW, 500 kHz, GaN-based, Bidirectional Battery Charger





500 kHz hardware test result



## High-Power-Density, 10 kW Motor Drive with High-Temperature Modules



#### Passive cooling with air at 70°C

#### **Objective:**

- Reduce weight through integration and high-temperature operation
- **Targets & Desired Features** 
  - Specific power: > 2 kVA/lb
  - Device junction temperature 200-300°C with SiC devices
  - Advanced topologies
  - Reduced filter size



June 7, 2016



## High-Power-Density, 10 kW Motor Drive with High-Temperature Modules







DEING

## High-Power-Density, 10 kW Motor Drive with High-Temperature Modules

- High-temperature SiC modules
- Sensorless control
- Soft start

Power Density

High-temperatu

1.27 kW/lb

June 7, 2016

Low

• Fan load application



Atemperature

175 °C Converte







#### 250°C Converter



DEING



#### Interleaved High Power Density AFE Converter



## Reliability of Direct-Bond-Copper (DBC) Substrate

Reliability of DBC substrate in thermal cycling between -55°C and 200°C



• DBC substrate fails in

< 20 cycles







**5** June 7, 2016

## Reliability of Direct-Bond-Copper (DBC) Substrate

#### Reliability of DBC substrate in thermal cycling between -55°C and 200°C



Direct-Bond-Copper Substrate

• DBC substrate fails in

< 20 cycles





June 7, 2016

## Reliability of Direct-Bond-Copper (DBC) Substrate

#### Reliability of DBC substrate in thermal cycling between -55°C and 200°C









#### Targets:

- > Junction temperature up to 250°C.
- > Ambient temperature over 150°C.







#### **Modified Hybrid Packaging Structure**







Multiple chip Hybrid Power Module



Power module thermal test





#### Integration of High-Temperature Three-Phase Rectifier





#### **Converter Thermal Testing**





Ambient temperature test point: -50°C, -25°C, 0°C, 25°C, 50°C, 75°C, 100°C, 125°C, 150°C

Test Picture for 150° C Ambient Temperature

#### Electrical and thermal performance met design targets. Ceramic capacitors and their attach to PCB exhibited early failures.



June 7, 2016



#### High-Temperature 3-Phase AC-DC Converter for Embedded Generators in MEA





- High-temperature and high-power-density
- Ambient temperature: 200 250 °C
- Switching frequency: 70 kHz





## Need a power module capable of both high-temperature & high-frequency operations!





#### **High-Temperature Packaging Materials Used**





#### High-temperature capability of the material; Suitable combinations of materials to achieve higher reliability





#### 1200 V, 60 A SiC Phase-Leg Module Design



#### Improved substrate layout to minimize loop inductances



#### Fast & clean switching



#### Hard switching w/ $R_G = 0 \Omega$ Fast di/dt & dv/dt with small V<sub>DS</sub> overshoot

## Fabricated module with DC decoupling capacitors



#### Switching Loss is 10-20% of an equivalent IGBT





#### 200 °C, 1200 V, 60 A SiC Phase-Leg Module: Continuous Operation at 200 °C





#### Test results at 560 V & 100 kHz







#### 200 °C, 1200 V, 120 A SiC Phase-Leg Module: Module Design







SRC Packaging Review On-site Workshop

11 12

cm 1\_\_\_\_

9 10

10



#### System Design

ROLLS



#### **Converter Layout**









#### **Converter Layout**





Cooling terminals

**DC** terminals





#### **Converter Testing**





June 7, 2016

#### Utilization of 10 kV SiC Devices for Grid-scale Applications



L

 Low-inductance interconnection achieved using molybdenum bumps and DBC.









 Low-inductance interconnection achieved using molybdenum bumps and DBC.





SRC Packaging Review On-site Workshop



**V**<sub>DC</sub>

Om

- Low-inductance interconnection achieved using molybdenum bumps and DBC.
- Embedded decoupling capacitors shorten the commutation loop.





20 mm

-V

= 3 nH



• Stacking DBC substrates can help to reduce the peak electric field.







## Stacking DBC substrates can help to reduce the peak electric field.



1. High-Density → Thermal & Electric Field





## Each MOSFET pair has its own gate and power loops.







## The <u>system interface</u> must be carefully designed to prevent partial discharge.







#### Surrounding pins with an <u>elliptical conductive</u> <u>shield</u> minimizes the peak electric field.







#### Conclusion

 The goal of standardized "Integrated Power Circuits" that enable high-density integration has not been achieved.

There are too many different functions:

- Electrical switching,
- Electrical conduction,
- Thermal conduction,
- Electrical insulation,
- Electrostatic energy storage,
- Magnetic energy storage,

that require too many different heterogeneous materials.

- New semiconductor materials and devices impose new challenges on packaging:
  - Reduced layout and interconnect designs for reduced parasitics that enable high frequency operation;
  - New high temperature materials with better matched CTEs for hightemperature operation;
  - New high-voltage materials and designs for eliminating "air" as insulator.



