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Mechanically Flexible Interconnects in Extreme

Condition Applications

Interconnects in extreme condition (temperature,
vibration, impact, and etc.)

We need reliable interconnects under vibration and
extreme temperature
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Mechanically Flexible Interconnects in Extreme

Condition Applications

Conventional solder Extreme temperature
based interconnects variation
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Mechanically Flexible Interconnects: Design

and FEM Analysis
» Design Strategy

— Material .
e High yield strength: NiW ;
— Geometry
e Uniform inner stress:
3D tapered and curved design
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Desigh and FEM Analysis

» Design Strategy
— Material
e High yield strength: NiW
— Geometry

e Uniform inner stress:
3D tapered and curved design

— Finishing
e Enhanced life-time:
Electroless gold passivation layer
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Fabrication of MFIs

A. Wafer Clean and surface passivation

B. Sacrificial Dome Patterning
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Fabrication of MFIs

A. Wafer Clean and surface passivation

B. Sacrificial Dome Patterning

C. Sacrificial Dome Reflow
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Fabrication of MFIs

A. Wafer Clean and surface passivation

Photoresist

C. Sacrificial Dome Reflow

D. Electroplating Seed Layer Deposition

E. Photoresist Spin-coating for Electroplating Mold Formation



Fabrication of MFIs

A. Wafer Clean and surface passivation
] ]

— Photoresist

B. Sacrificial Dome Patterning

C. Sacrificial Dome Reflow
D. Electroplating Seed Layer Deposition

E. Photoresist Spray-coating for Electroplating Mold Formation




Fabrication of MFIs
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F. Electroplating Mold Patterning

Se ia
Toch

10



Fabrication of MFIs

F. Electroplating Mold Patterning

G. MFIs Formation Using NiW
Electroplating

H. Electroplating Mold Removal
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Fabrication of MFIs

F. Electroplating Mold Patterning

G. MFIs Formation UsingNiW
Electroplating

H. Electroplating Mold Removal B Aoa | A P

|. MFIs Releasing and Gold Passivation
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Fabrication of MFIs

F. Electroplating Mold Patterning

G. MFIs Formation UsingNiW
Electroplating

H. Electroplating Mold Removal

|. MFIs Releasing and Gold Passivation
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Fabrication of MFIs

F. Electroplating Mold Patterning

G. MFIs Formation UsingNiW
Electroplating

H. Electroplating Mold Removal

|. MFIs Releasing and Gold Passivation
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Fabrication of MFIs
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F. Electroplating Mold Patterning
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G. MFIs Formation UsingNiW
Electroplating
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Well passivated MFI
surfaces \

-

Unexposed anchor- Flipp\ed Au-
H. Electroplating Mold Removal substrate interface NiW MFI

|. MFIs Releasing and Gold Passivation
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MFIs with Highly Scalable Pitch

G. MFIs Formation UsingNiW
Electroplating

1500m pitch

H. Electroplating Mold Removal

TS5pm pitch

|. MFIs Releasing and Gold Passivation




Mechanical Characterization

» Indentation test results show the Au-NiW MFIs have up
to 65 um vertical range of motion

Indentation
head

Gold passivated NiW MFls
(b)

Force (mN)
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Electrical Characterization

» Four-point resistance of Au-NiW MFls was performed on probing
station

» The electrical property of Au-NiW MFls is maintained by the gold
passivation layer.
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MFIs with Truncated Cone Tip

H. Tip Mold Patterning

|. Tip Formation

< 7

J. MFI releasing

K. Gold Passivation




MFIs Assisted Temporary Assembly

Chip/Interposer with MFls

Rematable assembly
on planar surface

Robust assembly on
non-planar surface
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Test Substrate

Test Substrate

Assembly pad with Low profile pad High profile pad

uniform height

Chip/Interposer with MFls
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Chip/Interposer with MFls

Test Substrate Test Substrate
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Four-Point Resistance Measurement

. - L
Four-point resistance X-ray imaging is used for
test structure alignment check

RESISTANCE CHARACTERIZATION FOR REMATABLE ASSEMBLY

Average Resistance Standard Deviation

(mQ) (mQ)
After 1% assembly 103.21 4,06
After 10™ assembly 105.99 4.40
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Assembled on Non-planar Substrate

Test Substrate
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Assembled on Non-planar Substrate

Resistance ( mQ)
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4-Point Resistance Measurement on Assembled MFls

1304 4 A
] _ A P
120 - i . o S
110 i & = ;| ™
P ®
1004 w @ " . X
90 -
80 -
70
] & on Planar Substrate
60+ & on Planar Substrate ( after 10 times trial )
50 4— on Non-planar Substrate
40 -
30
20 -
10
0 T T T T " T T
0 2 4 6 8 10 12
Test Point

Test Vehicle Surface Topography
L
40 - \
1 High
5" profile pad
5,
10
04 L - U~
o 200 400 B00 800 1000 1200

Distance (um)
Low profile pad

High profile pad

Low profile pad

Ge ia
Toch



MFI/TSV Integration




MFI/TSV Integration

» DC Measurement

— Resistanceyg,1sy =76 ML2

/\?\ | Table 12: Dimensions of TSV /MFT array
L

Demension | Value (pm)
Diameter 50
TSV Height 300
Pitch 100
Vertical height 30
MEFT Thickness 5
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Advanced Cooling
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Microelectronic Cooling

T

Heat Spreader

| W

e Power limit ~100W/cm?
e Large Footprint

TIM

e Incompatible with high power 3DIC
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=
Monolithic Microfluidic Heat Sink in IC

300pm
Flow

350 @ 100um :>

Assmbledcrfluidic— ) Q Q Ge%gciﬁ

et cooled FPGA T. Sarvey et al IEEE CICC 2015


Presenter
Presentation Notes
This work is the only work I am aware of which implements cooling within the package.  The target here was efficiency (thorugh low leakage) rather than dissipation of high heat fluxes.


Demo with Pulse Compression Core

» A functional design for Stratix V DSP
kit
— Multiple independent Pulse Compression test

units. The number of active cores to be enabled
is run time configurable

> Design optimized for streaming data
and low latency
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Microfluidic Cooled FPGA Performance

Fluidic ' Fluidic ' Throughp
FPGA FPGA ut GOP/s
Power

15.4 16.0 21-23 46 104

17.6 18.3 22-23 49 208

19.8 20.5 22-23 51 311
. : 4 21.9 22.8 22-23 53

Baseline Design E s

24.0 25.1 22-23 59 519

T. Sarvey et al IEEE CICC 2015 _ 26.2 27.5 22.23 59 623

III \EEE 28.3 29.8 22-24 61* 797
30.4 -- 22-24 --

il SPECTRUM I 830

1.5x of Baseline Compute Capability

Flow Rate

20W 147mL/min  24°C rgia

Junction-to-ambient Ry, = 0.08°C/W ech


Presenter
Presentation Notes
The FPGA with the stock air cooled heat sink overheats (defined as 60C) here running only 6 cores, while the liquid cooled one can easily run all 9.  Also, running all 9, the liquid cooled one is still at a cool 24C, compared to the cooled FPGA’s 60C.


High-Aspect Ratio TSVs Integrated Within a

Micropin-fin Heat Sink (TSV AR = 23:1)

Multiple TSVs in a micropinfin heat sink
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RF measurements setup with the testbed
Fabricated & assembled testbed

Pads Fluid outlet 7

- Top SEM view
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Bottom view before bonding SN
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Metal pads
on TSVs 100 pm
Fluid inlet Fluid outlet
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Glass

Distilled water Each micropin-fin contains one TSV.

Coaxial TSVs in a micropinfin heat sink

Metal pad to connect ground TS\

[
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RF measurement results

Non-coaxial TSVs —o—
2t Coaxial-like TSVs —6— | -

S,, magnitude variation suppressed,
-2 | which is occurred to the presence
of coolant around TSVs
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Thank you!
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