

Possible Needs for Automotive: Mechanically Flexible Interconnects and Advanced Cooling

Muhannad Bakir

Mechanically Flexible Interconnects in Extreme Condition Applications

Interconnects in extreme condition (temperature, vibration, impact, and etc.)

We need reliable interconnects under vibration and extreme temperature

Mechanically Flexible Interconnects in Extreme Condition Applications

Mechanically Flexible Interconnects: Design and FEM Analysis

- Design Strategy
 - Material
 - High yield strength: NiW
 - Geometry
 - Uniform inner stress:

3D tapered and curved design

Design and FEM Analysis

- Design Strategy
 - Material
 - High yield strength: NiW
 - Geometry
 - Uniform inner stress:

3D tapered and curved design

- Finishing
 - Enhanced life-time:

Electroless gold passivation layer

A. Wafer Clean and surface passivation

E. Photoresist Spin-coating for Electroplating Mold Formation

A. Wafer Clean and surface passivation

(b) Dome 50 μm

E. Photoresist Spray-coating for Electroplating Mold Formation

F. Electroplating Mold Patterning

Tech

F. Electroplating Mold Patterning

H. Electroplating Mold Removal

F. Electroplating Mold Patterning

G. MFIs Formation UsingNiW Electroplating

H. Electroplating Mold Removal

I. MFIs Releasing and Gold Passivation

F. Electroplating Mold Patterning

H. Electroplating Mold Removal

Georgia Tech

I. MFIs Releasing and Gold Passivation

I. MFIs Releasing and Gold Passivation

Georgia Tech

MFIs with Highly Scalable Pitch

F. Electroplating Mold Patterning

G. MFIs Formation UsingNiW Electroplating

50µm

H. Electroplating Mold Removal

I. MFIs Releasing and Gold Passivation

MFIs

Mechanical Characterization

Indentation test results show the Au-NiW MFIs have up to 65 μm vertical range of motion

Electrical Characterization

- Four-point resistance of Au-NiW MFIs was performed on probing station
- The electrical property of Au-NiW MFIs is maintained by the gold passivation layer.

ELECTRICAL RESISTANCE MEASUREMENT FOR NIW MFIS

	Zone1(m Ω)		Zone $2(m\Omega)$		Zone 3(mΩ)	
	No Au	Au	No Au	Au	No Au	Au
t=0	119.5	76.1	117.7	76.7	119.6	75.2
t=2 months	152.3	86.7	162.2	84.6	163.3	85.8

MFIs with Truncated Cone Tip

MFIs Assisted Temporary Assembly

Four-Point Resistance Measurement

Four-point resistance test structure X-ray imaging is used for alignment check

RESISTANCE CHARACTERIZATION FOR REMATABLE ASSEMBLY

	Average Resistance $(m\Omega)$	Standard Deviation $(m\Omega)$	
After 1 st assembly	103.21	4.06	-
After 10 th assembly	105.99	4.40	Georgia

Assembled on Non-planar Substrate

Assembled on Non-planar Substrate

MFI/TSV Integration

MFI/TSV Integration

DC Measurement

- Resistance_{MFI+TSV} = 76 m Ω

 Table 12:
 Dimensions of TSV/MFI array

	Demension	Value (μm)	
TSV	Diameter	$\overline{50}$	
	Height	300	
	Pitch	100	
MFI	Vertical height	30	
	Thickness	5	
	Pitch	100	

Advanced Cooling

Microelectronic Cooling

- Power limit ~100W/cm²
- Large Footprint
- Incompatible with high power 3DIC

Monolithic Microfluidic Heat Sink in IC

Demo with Pulse Compression Core

- A functional design for Stratix V DSP kit
 - Multiple independent Pulse Compression test units. The number of active cores to be enabled is run time configurable

Design optimized for streaming data and low latency

T. Sarvey et al IEEE CICC 2015

Microfluidic Cooled FPGA Performance

Baseline Design

T. Sarvey et al IEEE CICC 2015

SPECTRUM

Cores	Fluidic FPGA Power (W)	Air FPGA Power (W)	Fluidic FPGA Temp (°C)	Air FPGA Temp (°C)	Throughp ut GOP/s
0	13.2	13.7	21-22	43	0
1	15.4	16.0	21-23	46	104
2	17.6	18.3	22-23	49	208
3	19.8	20.5	22-23	51	311
4	21.9	22.8	22-23	53	415
5	24.0	25.1	22-23	59	519
6	26.2	27.5	22-23	59	623
7	28.3	29.8	22-24	61*	727
8	30.4		22-24		830
9	32.4		22-24		934

1.5x of Baseline Compute Capability

High-Aspect Ratio TSVs Integrated Within a Micropin-fin Heat Sink (TSV AR = 23:1)

Multiple TSVs in a micropinfin heat sink

RF measurements setup with the testbed

Fabricated & assembled testbed

Thank you!

