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Interconnects in extreme condition (temperature, 
vibration, impact, and etc.)

Mechanically Flexible Interconnects in Extreme 
Condition Applications

We need reliable interconnects under vibration and 
extreme temperature
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Mechanically Flexible Interconnects in Extreme 
Condition Applications

Conventional solder 
based interconnects
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-. Flexibility can compensate any 
warpage in components

-. Flexible interconnect and pressure 
based contact can maintain good 
connection between components
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Mechanically Flexible Interconnects: Design 
and FEM Analysis
Design Strategy

– Material
• High yield strength: NiW

– Geometry
• Uniform inner stress: 

3D tapered and curved design
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Design and FEM Analysis

Design Strategy
– Material

• High yield strength: NiW
– Geometry

• Uniform inner stress: 
3D tapered and curved design

– Finishing
• Enhanced life-time:

Electroless gold passivation layer
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Fabrication of MFIs

A. Wafer Clean and surface passivation

B. Sacrificial Dome Patterning
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Fabrication of MFIs

A. Wafer Clean and surface passivation

B. Sacrificial Dome Patterning

C. Sacrificial Dome Reflow

D. Electroplating Seed Layer Deposition

E. Photoresist Spin-coating for Electroplating Mold Formation
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Fabrication of MFIs

A. Wafer Clean and surface passivation

B. Sacrificial Dome Patterning

C. Sacrificial Dome Reflow

D. Electroplating Seed Layer Deposition

E. Photoresist Spray-coating for Electroplating Mold Formation
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Fabrication of MFIs

F. Electroplating Mold Patterning
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Fabrication of MFIs

F. Electroplating Mold Patterning

G. MFIs Formation Using NiW 
Electroplating

H. Electroplating Mold Removal
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Fabrication of MFIs

F. Electroplating Mold Patterning

G. MFIs Formation UsingNiW
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H. Electroplating Mold Removal

I. MFIs Releasing and Gold Passivation
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Fabrication of MFIs

F. Electroplating Mold Patterning

G. MFIs Formation UsingNiW
Electroplating

H. Electroplating Mold Removal
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MFIs with Highly Scalable Pitch

F. Electroplating Mold Patterning

G. MFIs Formation UsingNiW
Electroplating

H. Electroplating Mold Removal

I. MFIs Releasing and Gold Passivation
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Mechanical Characterization

 Indentation test results show the Au-NiW MFIs have up 
to 65 μm vertical range of motion

Indentation 
head
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Electrical Characterization

ELECTRICAL RESISTANCE MEASUREMENT FOR NIW MFIS 

 
Zone1(mΩ) Zone 2(mΩ) Zone 3(mΩ) 

No Au Au No Au Au No Au Au 

t=0 119.5 76.1 117.7 76.7 119.6 75.2 

t=2 

months  
152.3 86.7 162.2 84.6 163.3 85.8 

 

 Four-point resistance of Au-NiW MFIs was performed on probing 
station

 The electrical property of Au-NiW MFIs is maintained by the gold 
passivation layer.
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MFIs with Truncated Cone Tip

H. Tip Mold Patterning

I. Tip Formation

J. MFI releasing

K. Gold Passivation
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MFIs Assisted Temporary Assembly

Chip/Interposer with MFIs

Test Substrate 

Assembly pad with 
uniform height

Test Substrate 

Low profile pad High profile pad

Chip/Interposer with MFIs

Test Substrate 

Chip/Interposer with MFIs

Test Substrate 

Rematable assembly 
on planar surface

Robust assembly on 
non-planar surface
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Four-Point Resistance Measurement

X-ray imaging is used for 
alignment check

Four-point resistance 
test structure

RESISTANCE CHARACTERIZATION FOR REMATABLE ASSEMBLY 

 Average Resistance 
(mΩ) 

Standard Deviation 
(mΩ) 

After 1st assembly 103.21 4.06 
   

After 10th assembly 105.99 4.40 
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Assembled on Non-planar Substrate

Chip/Interposer with MFIs

Test Substrate 
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Assembled on Non-planar Substrate

Low profile pad

High 
profile pad

Low profile padHigh profile pad
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MFI/TSV Integration

MFI

Pad

TSV
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MFI/TSV Integration

DC Measurement
– ResistanceMFI+TSV =76 mΩ
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Advanced Cooling
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Die

Package

TIM Heat Spreader

Microelectronic Cooling

• Power limit ~100W/cm2

• Large Footprint
• Incompatible with  high power 3DIC

Air Cooled Heat Sink
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Heat Spreader

Package

Die

Package

Microchannel 
Cold Plate

Monolithic Microfluidic Heat Sink in IC

Inlet Outlet

Etched FPGA Backside

Micropin-fin Dimensions

Assembled Microfluidic-
cooled FPGA

100µm

300µm

350µm

Flow

TIM

T. Sarvey et al IEEE CICC 2015

Presenter
Presentation Notes
This work is the only work I am aware of which implements cooling within the package.  The target here was efficiency (thorugh low leakage) rather than dissipation of high heat fluxes.
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Demo with Pulse Compression Core

 A functional design for Stratix V DSP 
kit

– Multiple independent Pulse Compression test 
units. The number of active cores to be enabled 
is run time configurable

 Design optimized for streaming data 
and low latency

T. Sarvey et al IEEE CICC 2015
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Microfluidic Cooled FPGA Performance

Power Flow Rate Die Temp
29W 147mL/min 24°C

1.5x of Baseline Compute Capability

Baseline Design

Junction-to-ambient Rth ≈ 0.08°C/W

Cores Fluidic 
FPGA 
Power 
(W)

Air 
FPGA 
Power 
(W)

Fluidic 
FPGA 
Temp 
(°C)

Air 
FPGA 
Temp 
(°C)

Throughp
ut GOP/s

0 13.2 13.7 21-22 43 0
1 15.4 16.0 21-23 46 104
2 17.6 18.3 22-23 49 208
3 19.8 20.5 22-23 51 311
4 21.9 22.8 22-23 53 415
5 24.0 25.1 22-23 59 519
6 26.2 27.5 22-23 59 623
7 28.3 29.8 22-24 61* 727
8 30.4 -- 22-24 -- 830
9 32.4 -- 22-24 -- 934

Nov. 2015

T. Sarvey et al IEEE CICC 2015

Presenter
Presentation Notes
The FPGA with the stock air cooled heat sink overheats (defined as 60C) here running only 6 cores, while the liquid cooled one can easily run all 9.  Also, running all 9, the liquid cooled one is still at a cool 24C, compared to the cooled FPGA’s 60C.
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High-Aspect Ratio TSVs Integrated Within a
Micropin-fin Heat Sink (TSV AR = 23:1)

RF measurements setup with the testbed

Coaxial TSVs in a micropinfin heat sink

RF measurement results

S11 magnitude variation suppressed, 
which is occurred to the presence 
of coolant around TSVs

Multiple TSVs in a micropinfin heat sink
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