Packaged Systems Research for Advanced Vehicle Electronics @CAVE3

Pradeep Lall

MacFarlane Endowed Professor and Director Auburn University Harsh-Node of NextFlex NSF-CAVE3 Electronics Research Center Auburn, AL 36849 Tele: (334)844-3424 E-mail: lall@auburn.edu

cave³

A National Science Foundation Center

Copyright © 2012

cave.auburn.edu Email: cave@auburn.edu Tele: (334) 844-3424

Goals AU Harsh Node of NextFlex

- □ Accelerate technology adoption into harsh-environment products by developing and commercializing advanced manufacturing technologies.
- □ Leverage electronics industry and high performance printing industry, both US industrial and academic areas of strength.

The five FHE core manufacturing focus areas are included below:

- 1. Device Integration and Packaging
- 2. Materials:
- 3. Printed Flexible Components and Microfluidics
- 4. Modeling & Design
- 5. Standards, Test & Reliability

Impact on Economic Development

The Institute is a Economic Development Activity intended to:
Create a strong healthy ecosystem in flexible electronics.
Take TRL4 technologies and cross valley between laboratory research and product development.

	Table 1. Technology Readiness Levels and Manufacturing Readiness Levels, after [21]				
	TRL 1:	Basic principles observed and reported	MRL 1:	Manufacturing feasibility assessed	
	TRL 2:	Technology concept and/or application formulated	MRL 2:	Manufacturing concepts defined	
	TRL 3:	Analytical and experimental critical func- tion and/or characteristic proof of concept	MRL 3:	Manufacturing concepts developed	
NMI Target	TRL 4:	Component and/or breadboard validation in a laboratory environment	MRL 4:	Capability to produce the technology in a laboratory environment	
	TRL 5:	Component or breadboard validation in a relevant environment	MRL 5:	Capability to produce prototype components in a production relevant environment	
	TRL 6:	System/subsystem model or prototype demonstration in a relevant environment	MRL 6:	Capability to produce prototype system or sub- system in a production relevant environment	
	TRL 7:	System prototype demonstration in an operational environment	MRL 7:	Capability to produce systems, subsystems or components in a production relevant environment	
	TRL 8:	Actual system completed and qualified through test and demonstrated	MRL 8:	Pilot line capability demonstrated; Ready to begin Low Rate Initial Production	
	TRL 9:	Actual system proven through successful mission operations	MRL 9:	Low rate production demonstrated; Capability in place to begin Full Rate Production	

Cave⁵ IMI Proposer's Day, Feb 19, 2015 NSF Center for Advanced Vehicle and Extreme Environment Electronics

Enabling Infrastructure Technologies

SOURCE: Figure 6, "Managing the entire technology life cycle: Policy roles in response to market failures" in Gregory Tassey, "Beyond the business cycle: The need for a technology- based growth strategy," Science and Public Policy (2013) 40(3):293-315,; in The Flexible Electronics Opportunity, National Academies Press, 2014

Model for Making an Economic Impact

Fundamental-Research Areas

Traditional Automotive Electronic Systems

Category	Example Systems		
Engine & Power Train	EFI (electronic fuel injection), ECU (engine control unit),		
	TCU (transmission control unit), KCS (knock control		
	system), cruise control, cooling fans		
Chassis & Safety	Active 4-wheel steering, active control suspension, ABS		
	(anti-lock brake system), TRC (traction control system),		
	VSC (vehicle stability control), air bag system		
Comfort & Convenience	Preset steering wheel position, climate control, power		
	seat, power windows, door lock control, mirror controls		
Displays & Audio	Radio (AM, FM, satellite), CD player, TV and DVD		
	player, cellular phone, navigation system, instrument		
	cluster		
Signal Communications &	Communications bus, starter, alternator, battery,		
Wiring Harness	diagnostics		

Johnson, et.al., The Changing Automotive Environment:High-Temperature Electronics, IEEE Transactions On Electronics Packaging Manufacturing, Vol. 27, No. 3, July 2004

Core-Functionality Systems Enabled by Electronics

Flexible Electronics Applications

Integration of Sensors into Automotive Surfaces

Product Concepts: Courtesy of Continental AG

cave³

NSF Center for Advanced Vehicle and Extreme Environment Electronics

Our Mission: Information management in the vehicle for driver & passengers – a key to realize "Clean Power" and "Zero Accidents".

NSF Center for Advanced Vehicle and Extreme Environment Electronics

Automotive Temperature Extremes

Combustion Chamber. < 500°C •Pressure Sensors

Engine, Transmission: < 200°C •Engine-mounted ECUs •Integrated TCUs •Shift-by-Wire Wheel Mounted Components: < 300°C
Brake-by-Wire
Steer-by-Wire

R. Thompson, *Proc. SMTA/CAVE Workshop Harsh Environment Electronics*, Dearborn, MI, Jun. 24–25, 2003_

NSF Center for Advanced Vehicle and Extreme Environment Electronics

AUBURN

Automotive Temperature Extremes

TABLE II

AUTOMOTIVE TEMPERATURE EXTREMES (DELPHI DELCO ELECTRONIC SYSTEMS) [3]

Location	Typical Continuous	Vibration Level	Fluid Exposure
	Max Temperature		
On engine	140°C	Up to 10Grms	Harsh
On transmission			
At the engine	125°C	Up to 10Grms	Harsh
(intake manifold)			
Underhood	120°C	3 – 5Grms	Harsh
(near engine)			
Underhood	105°C	3-5Grms	Harsh
(remote location)			
Exterior	70°C	3-5Grms	Harsh
Passenger	70-80°C	3 – 5Grms	Benign
compartment			

Johnson, et.al., The Changing Automotive Environment:High-Temperature Electronics, IEEE Transactions On Electronics Packaging Manufacturing, Vol. 27, No. 3, July 2004

Automotive Temperature Extremes

TABLE IV

REQUIRED OPERATION TEMPERATURE FOR AUTOMOTIVE ELECTRONIC SYSTEMS (TOYOTA MOTOR CORP. [5]

ECU Location	Detail Position	Required Operation Temperature	
Passenger Room	Under dash board	$-30 \text{ to } +85^{\circ}\text{C}$	
	ECU Box	-30 to +105°C	
Engine Room	Underhood	$-30 \text{ to } +125(150)^{\circ}\text{C}$	
	Connected to Engine	$-30 \text{ to} >+175^{\circ}\text{C}$	

Johnson, et.al., The Changing Automotive Environment:High-Temperature Electronics, IEEE Transactions On Electronics Packaging Manufacturing, Vol. 27, No. 3, July 2004

Automotive Environment

TABLE III THE AUTOMOTIVE ENVIRONMENT (GENERAL MOTORS AND DELPHI DELCO ELECTRONIC SYSTEMS) [4]

	Driver interior	-40° C to $+85^{\circ}$ C
	Underhood	-40° C to $+125^{\circ}$ C
Temperature	On-engine	-40° C to $+150^{\circ}$ C
-	In the exhaust and	-40° C to $+200-600^{\circ}$ C
	combustion areas	
Mechanical Shock	During assembly (drop test)	3000g
	On the vehicle	50-500g
Mechanical Vibration		15g, 100Hz to 2kHz
Electromagnetic Impulses		100 to 200V/m
Exposure to	Common	Humidity, salt spray
-	In some applications	Fuel, oil, brake fluid,
		transmission fluid, ethylene
		glycol, exhaust gases

Johnson, et.al., The Changing Automotive Environment:High-Temperature Electronics, IEEE Transactions On Electronics Packaging Manufacturing, Vol. 27, No. 3, July 2004

Automotive Operational Temperatures

cave

Temperature Instrumentation

R. Thompson, *Proc. SMTA/CAVE Workshop Harsh Environment Electronics*, Dearborn, MI, Jun. 24–25, 2003

Automotive Operational Temperatures

NSF Center for Advanced Vehicle and Extreme Environment Electronics

Vehicle Speed Influences Under-Hood Ambient Temperature

C. Larner, *Proc. Issues of Defining and Designing for the High Temperature Automotive Electronics Environment, SMTA/CAVE Workshop Harsh Environment Electronics*, Dearborn, MI, Jun. 24–25, 2003

Under Hood Ambient Temperature Profile 1 Year Interval Modeled

C. Larner, Proc. Issues of Defining and Designing for the High Temperature Automotive Electronics Environment, SMTA/CAVE Workshop Parsh Environment Electronics, Dearborn, MI, Jun. 24–25, 2003

Al pad with barrier: joint stability at high temperature

Au/Al after 66h at 300C New pad metallurgy after 500h at 300C

□ In this example the absence of joint degradation with the new pad finishing is showed

M. Hundt, Improved Reliability of Gold to Aluminum Bonding in Plastic Packages for High Temperature, High Current Applications, Proc. SMT CAVE Workshop Harsh Environment Electronics, Dearborn, MI, Jun. 24–25, 2003

Transition to Cu WB and Ag WB

Bonding Wire Shipment Share by Type

NSF Center for Advanced Vehicle and Extreme Environment Electronics

cave³

Crack Initiation and Propagation

Cave

Oxidation of Cu-Al intermetallics during operation at high temperature and high humidity may cause oxidation of IMC, followed by crack initiation, and eventual failure.

150°C Thermal Aging

cave³

200°C Thermal Aging

High Voltage Applications in Automotive

Corrosion is accelerated in the presence of ionic species, such as halide, hydroxyl ions, and elevated temperature.
 Cu and Ag wire is finding increasing applications in high

- power electronics operating at 50V-300V used for propulsion, transmission and control in emerging hybrid electric (HEV) and electric vehicles (EV).
- □Electronics is located under the hood of a car where the temperatures in the neighborhood of 125°C 175°C can be experienced on a regular basis.
- Presently, there are no life prediction models for Cu-Al and Ag-wirebonding under corrosive high temperature automotive conditions.
- There is need for reliability models and assessment methods which can predict field failures for high voltage, extreme environment applications.

Problem: Rapid Assessment of Propensity for Tin Whisker Formation in Platings

Tin-Whiskers in Tin-Plated Copper Leads soldered to PCBs

http://www.nhtsa.gov/UA

Problem: Measure High Strain-Rate Properties of SAC Alloys at Strain Rate of 1-100 sec⁻¹

cave

CREEP Example Data – Aging at 100 °C

31

NSF Center for Advanced Vehicle and Extreme Environment Electronics

cave

CREEP RATE

Effects of Aging - SAC105

Complete data set contains results from all SAC series alloys (SAC 105, 205, 305, 405, and Sn-Pb)

CREEP RATE

Effects of Aging - SAC105

The Time Duration Before the Cross-Over Depends on the Composition of the SAC Alloy and the Aging Temperature. Increased Silver Content Increases the Aging Time Required Before the Cross-Over Occurs.

NSF Center for Advanced Vehicle and Extreme Environment Electronics

Engine Control Module

NSF Center for Advanced Vehicle and Extreme Environment Electronics

On-Board Diagnostics

cave

Throttle-Related Fault Codes P0120 Throttle/Pedal Position Sensor/Switch A Circuit Malfunction P0121 Throttle/Pedal Position Sensor/Switch A Circuit **Range/Performance Problem** P0122 Throttle/Pedal Position Sensor/Switch A Circuit Low Input P0123 Throttle/Pedal Position Sensor/Switch A Circuit High Input P0124 Throttle/Pedal Position Sensor/Switch A Circuit Intermittent P0220 Throttle/Pedal Position Sensor/Switch B Circuit Malfunction P0221 Throttle/Pedal Position Sensor/Switch B Circuit Range/Performance Problem P0222 Throttle/Pedal Position Sensor/Switch B Circuit Low Input P0223 Throttle/Pedal Position Sensor/Switch B Circuit High Input P0224 Throttle/Pedal Position Sensor/Switch B Circuit Intermittent P0225 Throttle/Pedal Position Sensor/Switch C Circuit Malfunction Throttle /Dadal Desition Concor/Cwitch C Circuit **OBD-II User Manual:** Ran P02 P02 ".....Based on all the input data, the computer P02 below determines that the signal from the throttle position POG sensor is not rational (does not make sense when P06 compared to the other inputs), and it would fail the rationality test....."

Diagnostics Impact on Electronics Reliability

Reference:

cave³

Toyota Electronic Throttle Webinar, March 12, 2010

RP1210 standard used to facilitate diagnostics in heavy trucks and similar vehicles. The soldier is holding a ruggedized laptop. The arrow points to the Protocol Adapter with various different physical protocols such as CAN, J1850 (BDLC) and J1708 (UART) depending on the vehicle's ECMs.

NSF Center for Advanced Vehicle and Extreme Environment Electronics

Ref: Boys, R, IVSS-2004-APS-01, 2004
Solder Joint Reliability

Armstrong, Toyota "sticking pedals" recall a smokescreen?, Apr 12, 2010

".....A particular problem occurs when an EMI shunt-filter component, such as a capacitor, experiences a "dry joint" or a cracked and intermittent solder joint. When the joint is opencircuit, EMI is allowed into the electronic circuit, where it can cause errors or misoperation....."

cave

CAN Bus

- Developed by Robert Bosch; Quickly gained acceptance.
- Serial bus protocol to connect individual systems and sensors as an alternative to conventional multi-wire looms
- Allows automotive components to communicate on a single or dual-wire networked data bus up to 1Mbps
- In 2006, over 70% of automobiles sold in North America utilized CAN Bus. In 2008, the SAE required 100% of the vehicles sold in USA to use CAN Bus

NSF Center for Advanced Vehicle and Extreme Environment Electronics

UNIVERSITY

Overview of Prognostic Health Management for Systems @CAVE3

NSF Center for Advanced Vehicle and Extreme Environment Electronics

ca

Cave³ Prognostics Framework

NSF Center for Advanced Vehicle and Extreme Environment Electronics

UNIVERSITY

Cave³ Prognostication Modules

Problem: Remaining Useful Life Assessment of Board Assembly Under Vibration @CAVE3

Problem: Prognostication of PBGA Assembly Anomalies and Fault Mode Classification @CAVE3

NSF Center for Advanced Vehicle and Extreme Environment Electronics

UNIVERSITY

SSL and Brand Statement

Source: netcarshow.com

LED Package Costs

Figure 2-1. Approximate cost breakdowns for LED-based luminaires in 2012 *Source: consensus of the 2011/2012 Manufacturing Workshop and Roundtable attendees*

> US DOE, Solid-State Lighting Research and Development: Manufacturing Roadmap, pg. 48, August 2012

LED lighting market is expected to increase very rapidly in the coming 10 years

1 Total general lighting market (new fixture installation market with light sources and lighting system control components [full value chain] and light source replacement market), automotive lighting (new fixture installations and light source replacement), and backlighting (light source only: CCFL and LED package)

SOURCE: McKinsey Global Lighting Market Model; McKinsey Global Lighting Professionals & Consumer Survey

McKinsey & Company, Lighting the way: Perspectives on the global lighting market, 2012

Problem: Predictive Model for Chromaticity Shift and Lumen Degradation in LEDs @CAVE3

47

Substrates in Flexible Electronics

	Thickness (µm)	Density (g/cm ²)	Transparency (%)	Haze (%)	Tg (°C)	Process temperature limit (°C)	Notes
PET	16-100	1.4	90	Approx. 0.3	80	120	
PEN	12-250	1.4	87	Approx. 0.8	120	155	
PI	12-125	1.4	_	_	410	300	
Glass	50-700	2.5	90	0.1	500	400	
Paper	100	0.6-1.0	_	_	_	130	
Transparent paper	20–200	Approx. 1	90	1–2	200 (?)	150	Made of nanocel- lulose fibers [1]
Steel	200	7.9	_	_	_	600 ^a	

^aNeeded to prevent oxidation

Reference: Introduction to Printed Electronics, K. Suganuma, Springer, 2014

Battery Technology in EV

Battery in a Tesla S Model chassis. The 85kWh battery has 7,616 type 18650 cells in parallel/serial configuration. Source: Tesla Motors

Reference: BU-1003: Electric Vehicle (EV), http://batteryuniversity.com/learn/article/electric_vehicle_ev

Battery Technology in EV

Driving range as a function of battery performance. A new EV battery only charges to about 80% and discharges to 30%. As the battery ages, more of the usable battery bandwidth is demanded, which will result in increased stress and enhanced aging

Reference: BU-1003: Electric Vehicle (EV), http://batteryuniversity.com/learn/article/electric_vehicle_ev

Prognostication of SOC for Batteries @CAVE3

Effect of Environment on SOC

Battery Capacity and Normalized Capacity

Ref: Lall, P., Zhang, H., Survivability and Remaining Useful Life Assessment of Flexible Batteries in Wearable Electronics, Proceedings of the FlexTech Conference, Monterrey, CA, Feb 28-Mar 4, 2016

Sintering for High Temperature Operation

Sintering is a combined surface, volume, and grain boundary diffusion process

Several processes (densification, grain growth, pore growth / coarsening) take place in parallel

Sintering Process Flow

Process	Stencil Printing	Drying	Die Pick and Place	Sintering
Equipment	conventional printing equipment	conventional box oven	die placer with heated tooling	sinter press
Parameter	standard parameter	drying in air 10 min. at 100°C	die placement temperature 120°C	sinter pressure 5-30 Mpa sinter temperature 230°C sinter time 3 min. in air

Courtesy of Rogers

Sinter Silver Paste

Paste = Silver powder mixed with additives (thinner, binder, dispersant)

Advantages of Sintered Silver

- Low sintering temperature
- □ (200-300°C)

cave

- High subsequent reflow temperature (961°C)
- Formulation is leadfree
- High thermal and electrical conductivity
- Ag thermal conductivity is 240 W/mK
- Sintering joint thickness is in the range of 50-100µm although lower joint thickness is possible

Courtesy of Heraeus

NSF Center for Advanced Vehicle and Extreme Environment Electronics

Industrial Sintering Process

Key Parameters for Sintering Joints

Package and Process	Parameters		
	Metallization and Metallization		
	Thickness, Plating Process, Surface		
Substrate	Roughness, Surface Contamination		
Die	Die Metallization and Size		
	Nanoparticles, Microparticles, Printing,		
Silver Paste	Dispensing, and Laminating		
Die Pick and Place and Paste			
Drying	Void Ratio, Porosity, Temperature		
	Time, Temperature, Pressure, Heat-Up,		
Sintering Profile	Cool-Down		
Sintering Atmosphere	Air, Nitrogen		

- AUBURN

Sinter Silver Paste

Sintering Profile DOE

Time (10 min – 30 min)
Temperature (200°C, 250°C, 300°C)

Sintering Process

- Dispense paste on substrate
- Attach the SiC chip on the silver sintered paste
- Attachment will be done in a convection oven
- Samples will be attached to a steel stud, one on each side of the stud for property measurement

Commercial Sinter Silver Pastes

Technical Data of mAgic sinter materials

Physical Properties	Solder	ASP043 Series	ASP043 Series	
		30 MPa Sinter pressure	10 MPa Sinter pressure	
Life Time (x times Solder)	1	> 10	> 10	
Thermal Conductivity [W/m·K]	~ 50	~ 200	~ 150	
Electrical Resistivity $[m\Omega \cdot cm]$	0.01 - 0.03	< 0.008	< 0.008	
CTE [ppm/K]	25 – 30	21	21	
E-Modulus @ 25 °C [GPa]	~ 30	~ 60	~ 50	

Courtesy of Heraeus

High Thermal Conductivity

High Thermal Fatigue Life

Commercial Sinter Silver Pastes

Some Sinter	Silver Pastes Requir	e No Pressure		_
mAgic Product Family				
	mAgic Paste Microbond ASP016-Series Pressure Assisted	mAgic Paste Microbond ASP043-Series Low Pressure	mAgic Paste Microbond ASP295-Series No Pressure	
Application				
Die Attach	+	÷	+	
Component Attach	n/a	n/a	+	
Process				
Dispensing	n/a	n/a	+	
Printing	+	+	+	
Properties				
Halogen Free	+	+	+	
Lead Free	+	+	+	
recom. Sinter Pressure	10 - 20 MPa	10 MPa	0 MPa	
Sintering in Air	+	+	+	
Sintering in Nitrogen	n/a	n/a	+	
Cleaning	not needed	not needed	not needed	
Metal content after processing (by weight)	100%	100%	100%	
Compat. Surface Finishes				
Ag	+	+	+	
Au	+	+	+	
Pd	+	+	+	

Courtesy of Heraeus

NSF Center for Advanced Vehicle and Extreme Environment Electronics

ca

Commercial Sinter Silver Pastes

Some Sinter Silver Pastes Require No Pressure

Item	Data	Appendix	
Cure condition	200 deg. C 90 min.	no pressure, in air	
Viscosity	140 Pa*s	E type viscometer 0.5 rpm	
Elastic modulus	17.6 GPa	Tensile test	
Coefficient of thermal expansion	19 ppm	TMA method	
Thermal conductivity	> 200 W7m*K	Laser flash method	
Volume restistance	6μ Ω	Four point probe method	
Shear strength at 260 deg. C	> 30 MPa	Die backside Au/Ag plated CU LF	
Applicable adhered	Ag, Au, Bare Cu	-	

Courtesy of Kyocera

NSF Center for Advanced Vehicle and Extreme Environment Electronics

Ca

What is TLPS?

- Diffusion bonding without application of pressure.
- Transient Liquid Phase Sintering (TLPS) is the low-temperature reaction of a low melting point metal or alloy with a high melting point metal or alloy to form a reacted metal matrix.
- TLPS forms a metallurgical bond between two surfaces. Depending on the alloy, TLPS may have a re-melt temperature in excess of 600°

TLPS vs Lead Containing Solders

TLPS Characteristics

Diffusion bonding without application of pressure. Bonding is specific to surface type and TLPS used □ Applied as a paste or preform or plated surface-to-surface Active fluxes to clean surfaces, bond oxide/contaminants Polymeric binders are retained in the joint □No rework is possible □No wetting or fillet formation □No solder ball formation □TLPS has much higher re-melt >600°C depending on the specific alloys formed

TLP Material Bonding Pairs

TLP	Processing Temperature	Processing Time	Remelt Temperature
Cu-Sn	280°C	4 min	~ 660°C
In-Ag	175°C	120 min	~ 780°C

Assembly/Integration of Disparate Components

<u>Challenge</u>: Processes for device assembly – Integration of foundry-based components with "printed" components

- Processing at low temperature on conformal, bendable, stretchable, and/or foldable substrates such as textiles, breathable cloths, plastics
- Reliable, high-speed registration techniques for multi-layer devices
- Pick-and-place: handling thinned dies, flex substrates
- Processes for large panel formats enabling multiple (dozens or hundreds) of simultaneous assemblies
- Automated and robotic approaches
- Chip/flex interconnects

IMI Proposer's Day, Feb 19, 2015

System Integration Demonstrations

<u>Challenge</u>: Establish performance capabilities for FHE devices through precompetitive Technology Platform Demonstrations

- Flexible encapsulation approaches, environmental protection
- Thermal management
- Powering component devices
- Physical packaging for manufacturability and survivability
- Common interconnects/component interfaces

66

Innovative Printing Processes

<u>Challenge</u>: Scale-up & optimization of innovative printing processes

- Finer features for higher input/output count die
- High-throughput & large area printing/deposition systems that can handle wide range of materials/inks and substrates – with enhanced process control
- Deposition on non-traditional substrates (textiles, lowtemperature plastics, stretchable materials, breathable) with varying surface energy, roughness, etc.
- Depositing vias in multi-layer circuit boards, precise registration for multi-layer devices

Thin Device Processes

Challenge: Scale-up & optimization of thin device processes

- Matured wafer thinning, epitaxial lift-off, controlled spalling processes
- Higher volume, lower cost processes
- Device designs mitigating interconnect issues on stretchable/flexible substrates

Flex-Hybrid Materials Manufacturability & Scale-Up

Challenge: Reproducibility and Scale-Up for FHE Materials

- Scale-up with flexibility & performance
 - Metals & dielectrics (including electroactive polymers) for sensors, passive components, interconnects, etc.
 - Low-temperature sinter/cure chemistries with benign solvents
 - Non-inks for interconnects, ball-grid arrays, low-temp solders, etc.
- Flexible substrates
 - Temperature/environmental survivability
 - Multilayer designs through vias for high density interconnects
 - Textile and low-temperature planarization
- Flexible encapsulant materials
- Adhesives

Models & Design Tools

<u>Challenge</u>: Validated tools & models for accelerated device design

- Adapting tools currently used by EDA and IC industries for FHE materials, form factors, and applications
- Understanding interplay between functional materials, substrates, and deposition processes
- Developing multi-physics tools (electrical, thermal, mechanical, etc.) to determine device manufacturing layout
- Populating databases with both materials properties and fabrication process parameters

Flexible Hybrid Electronics Manufacturing Challenges Standards, Testing, and Metrology

<u>Challenge</u>: Common industry standards & practices

- Define mechanical (bending/stretching) and environmental requirements. ID test techniques.
- Interface/interconnect standards to enable plug-and-play assembly of hybrid devices
- Layout/design rules to minimize part count & complexity, minimize power consumption

Challenge: In-process & reliability and quality testing

- In-line, high-speed, automated quality control tools both performance (e.g., electrical) and registration/geometry
- Test strategies/techniques to ensure long-term reliability in military environments – mechanical, chemical, thermal, etc. testing for durability

IMI Proposer's Day, Feb 19, 2015

Methods for Getting Involved with CAVE³

Fundamental Research

Join the CAVE³ Consortium Members gain access to CAVE³ resources Influence research thrusts Membership requires an annual membership fee.

Application Specific Projects and Services

Engage CAVE³ in application specific projects.

Professional Development

Engage CAVE³ in educating workforce. CAVE³ has a broad range of professional-courses:

- Prognostics health monitoring
- Shock and Vibration Reliability of Electronics
- Reliability Assurance
- Accelerated Testing
- Thermal Design and Management
- System Cost Analysis
- Supply Chain Management.

