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Can neural computing provide the
next Moore’s Law?
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Moore’s Law was based on scientific discovery i
and successive innovations
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Each successive advance made more O
computing feasible
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Better devices made better computers, which g s
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Better devices made better computers, which g s
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allowed engineering new devices... 2CCR
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If we extrapolate capabilities out, it is not ) i
obvious better devices is the answer... S CCR

Conventional NNs What Comes Next?
Computing Devices? or Neural Knowledge ?

When Deep Nets
became efficient

&
| -
)
(@

©
c
O
(&)
)
(7))
S
)
o
)
(&)
C
)

D
0]
)
c
(@)
-

)
>
Qo
=
O

O




Cycle of computing scaling already has begun
to influence neuroscience
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Even if Moore’s Law ends, computing will
continue to scale to be smarter
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The reservoir of known neuroscience untapped () s
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for computing inspiration is enormous 2CCR
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which are important for computing? #CCR
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The brain has many mechanisms for adaptation; ;) e

months

hours

Temporal
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There are different algorithmic |
approaches to neural learning #CCR
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" |n situ adaptation

" [ncorporate “new” forms of known neural
plasticity into existing algorithms

" Fx situ adaptation

= Design entirely new algorithms or algorithmic
modules to provide cognitive learning abilities
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Neurogenesis
Deep
Learning

Neurogenesis Deep Learning

Extending deep networks to accommodate new classes

Timothy J. Draclos*, Nadine E. Miner*, Chuistopher C. Lamb*, Jonathan A. Cox**, Craig M. Vineyard*, Kristofor D.
Carlson*, William M. Severa®, Conrad D. James*, and James B. Aimone*
*Sandia National Lab ies, Albuquerque NM, 87185 USA
{tjdrael, nrminer, celamb, cmviney , edjame, jbaimon} @sandia.gov
~ Present Address: Qualeomum Corporation, San Diego, CA USA
Joncox@alum.mit.edu




Deep Networks are a function of

training sets
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Deep Networks are a function of @&
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training sets +.CCR
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outside of training domain 2*CCR
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Deep networks often struggle to generalize )
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Neurogenesis can be used to capture new
information without disrupting old information ..

= Brain incorporates new neurons in a select
number of regions

= Particularly critical for novelty detection and
encoding of new information

= “Young” hippocampal neurons exhibit increased
plasticity (learn more) and are dynamic in their
representations

= “Old” hippocampal neurons appear to have
reduced learning and maintain their
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CE fer Com

A Immature neurons B Mature neurons

representations

= Cortex does not have neurogenesis (or similar
mechanisms) in adult-hood, but does during .
development / \

/ih‘\_

Tuning of immature neurons
Tuning of mature neurons

A a <> .d]:l A& <> O#]:l

Low infarmation coding of all content High information coding of some content

Aimone et al., Neuron 2011
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information without disrupting old information .:~~p
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Neurogenesis can be used to capture new eape

= Brain incorporates new neurons in a select A~ Immalureneurons B Malure neurons
. AAa §O 0B A A O O 4H
number of regions o
g s '/ N
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= Hypothesis: Can new neurons be used to NN A
facilitate adapting deep learning? Y T2
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Neurogenesis can be used to capture new )

= Brain incorporates new neurons in a select
number of regions

= Hypothesis: Can new neurons be used to
facilitate adapting deep learning?

= Neurogenesis Deep Learning Algorithm

= Stage 1: Check autoencoder reconstruction to
ensure appropriate representations 20
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Neurogenesis can be used to capture new
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information without disrupting old information .:~~p

= Brain incorporates new neurons in a select
number of regions

= Hypothesis: Can new neurons be used to
facilitate adapting deep learning?

= Neurogenesis Deep Learning Algorithm

= Stage 1: Check autoencoder reconstruction to
ensure appropriate representations
= Stage 2: If mismatch, add and train new neurons

= Train new nodes with novel inputs coming in
(reduced learning for existing nodes)

Center for Computing Research
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= Brain incorporates new neurons in a select
number of regions

= Hypothesis: Can new neurons be used to e m e 0 =
facilitate adapting deep learning?

Store Class Sample from
. . . Statistics of E E Class Statistics
= Neurogenesis Deep Learning Algorithm Encodings : and Decode
= Stage 1: Check autoencoder reconstruction to
ensure appropriate representations
= Stage 2: If mismatch, add and train new neurons

= Train new nodes with novel inputs coming in
(reduced learning for existing nodes)

= Intrinsically replay “imagined” training samples
from top-level statistics to fine tune
representations

Original | Examples
= Stage 3: Repeat neurogenesis until Data ‘ , 77 00 of Intrinsic 0 107

. Samples Replay Data
reconstructions drop below error thresholds P -
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Neurogenesis algorithm effectively
balances stability and plasticity

A Learning with Intrinsic Replay
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Neurogenesis algorithm effectively )
balances stability and plasticity S CCR

NDL with Intrinsic Replay
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NDL applied to NIST data set h)
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A New View
of the
Hippocampus




Deep learning = Cortex ) e,
What = Hippocampus? i"CCR
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Can a new framework for studying the )
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hippocampus help inspire computing? 2CCR

= Desired functions

Learn associations between cortical modalities

Encoding of temporal, contextual, and spatial
information into associations

Ability for “one-shot” learning
Cue-based retrieval of information

= Desired properties

Compatible with spiking representations
Network must be stable with adaptation
Capacity should scale nicely

Biologically plausible in context of extensive
hippocampus literature

Ability to formally quantify costs and performance

= This requires a new model of CA3

Center for Computing Research
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Formal model of DG provides

Sandia
rl'l National
Laboratories

lossless encoding of cortical inputs 2CCR

= Constraining EC ., Entorhinal
. ___Cortex |
inputs to have
“grid cell” structure D;;::?

sets DG size to

Sample EC Patiam
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a4z > 1

Sample DG Patiern

0+ Ystlae

CA1

biological level of CA3
. ' Key )
expansion (~10:1) T‘il & Newwon i
h 4 t Activity Patern

= Mixed code of broad-
tuned (immature) neurons and
narrow tuned (mature) neurons
confirms predicted ability to encode
novel information

William Severa, NICE 2016
Severa et al., Neural Computation, 2017

DG Activity Space

Owery differentiating Adaptive msplution

LA ! .
e >
o ® .0, [ » ® o [®
J‘Ro L L
t Undifferentiated novel in;u\ t
Uncodad novel input Uncoded novel inpat  Differentiated novel imput
Single-value coding, Single-value coding, Mixed Coding
large p small @




Classic model of CA3 uses Hopfield-like eape
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recurrent network attractors #*CCR
:.;..forf ting R ch
Problems
Overlapping EC inputs are encoded separately by the DG = “Auto-associative” attractors make more

sense in frequency coding regime than in
spiking networks

N | | = Capacity of classic Hopfield networks is
Associative memories formed in CA3 do not
interfere with one another genera”y IOW
Ay
. &,ﬁ%‘a%%
. S

= Quite difficult to perform stable one-shot
updates to recurrent networks

lllll
......
''''''

Deng, Aimone, Gage, Nat Rev Neuro 2010




Moving away from the Hopfield )
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learned auto-association” function for CA3 #CCR
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Hopfield dynamics are
discrete state transitions




Spiking dynamics are inconsistent with fixed ) e
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point attractors in associative models #CCR
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Spiking dynamics are inconsistent with fixed ) e
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point attractors In associative models ﬁCCR
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Path attractors, such as orbits, are consistent ) e
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with spiking dynamics f;CCR
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A new dynamical model of CA3 rh)
Z#CCR
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S Problems

v © ~\~ » @ © = “Auto-associative” attractors make more
sense in frequency coding regime than in

- I I - spiking networks ——— S
- V\“ - Orbits of
® — 8 Spiking Neurons

0

1 g

1 B 1 .

0 J U @ ® 0 ¢ = Capacity of classic Hopfield networks is
0 generally low

1 o’ L ) - - - -

0

0 @ | | |

0 gl'l”ll'"’l”ll
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Neuromodulation can shift dynamics of ) i
recurrent networks
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O O Respondsto PC1

PC1 PC2 PC3 () O Q)

¥
. i -
e Responds to PC3
With modulator
o .
° W Downstream network has neurons that
e o ® < have learned correlated patterns that

emerge only under modulatory conditions

In response to modulation, correlated dynamics
of network shift in cohesive manner

Carlson, Warrender, Severa and Aimone; in preparation
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Cortex and subcortical inputs can modulate 7 i
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CA3 attractor access #*CCR
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= Modulation can be provided
mechanistically by several sources

= Spatial distribution of CA3 synaptic | I
inputs suggests EC inputs could be _ |7\ _ /| _
considered modulatory _ J—] ’i\ _

= Metabotrophic modulators (e.g., \~\/ > L/
serotonin, acetylcholine) can bias - d b, . —.\
neuronal timings and thresholds - —&— ) ) S

=  Attractor network can thus have
many “memories”, but only fraction
are accessible within each context




A new modulated, dynamical model of CA3
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Problems

“Auto-associative” attractors make more
sense in frequency coding regime than in

spiking networks
Orbits of
Spiking Neurons

Capacity of classic Hopfield networks is
generally low

Context

modulation

Quite difficult to perform stable one-shot
updates to recurrent networks




CA1l encoding can integrate cortical et
input with transformed DG/CA3 input  :ccr

Center for Computing Research

= CA1 plasticity is dramatic
= Synapses appear to be structurally volatile
= Representations are temporally volatile
= Consistent with one-shot learning

P W A
= Can consider EC-CA1-EC loosely as an | 3 Current . L. = ...
autoencoder, with DG / CA3 “guiding” State
what representation is used within CAl RETYY LYY
Dentat_e_ Gyrus o - Average
? State of
\ 4
e e 0Q0Q uooomce)%A?»
) g — roit
{4 Combined 00 CB\O QOC
ca1 Representation O0QOO00O000
—J across Time




A new modulated, dynamical model of CA3 (@) Ez..
#CCR
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