RRAM-BASED NEURO-INSPIRED COMPUTING FOR UNSUPERVISED TEMPORAL PREDICTIONS

R. DEGRAEVE, D. RODOPOULOS, A. FANTINI, D. GARBIN, D. LINTEN, P. RAGHAVAN

STRICTLY CONFIDENTIAL

Purpose

Show a learning algorithm that exploits the physical properties of RRAM as true imitation of synaptic connections

- Resistive RAM properties
- Algorithm
- Discussion and analysis
- Conclusions

O-VACANCY RRAM = TUNABLE CONDUCTIVE FILAMENT BUT STOCHASTIC BEHAVIOR MAKES IT AN UNRELIABLE STORAGE ELEMENT

- Broad distribution at both low and high resistive state
- Stochastic behavior after program, after read and as a function of time
- Extremely unsuited as a stable 'weight' element

TRUE RRAM PROPERTY = STABLE MEAN BEHAVIOR PHYSICS = STABLE NUMBER OF VACANCIES IN FILAMENT CONSTRICTION

- Switch from high to low resistance = abrupt due to positive feedback effect
- Repeated stimuli result in stable mean filament growth
- BUT = read-out remains wide distribution & stochastic

WHAT ALGORITHM TAKES BEST ADVANTAGE OF RRAM PROPERTIES? CONTINUOUS LEARNING OF TEMPORAL DATA

ເກາຍc

00000100...000

Duplication for 3

 $contexts = (WW)_i$

00000100...000

00000100...000

STEP 2: CHECK PREVIOUSLY SEEN SEQUENCE STEPS RRAM ARRAY IN READ MODE @ LOW VOLTAGE

- Read possible existing connections between new state and previous state
- Parallel reading
- Simply checking whether current > threshold

STEP 3: FIND EXISTING CONNECTIONS AIM= EACH CONNECTION IS PROGRAMMED ONLY ONCE

- Existing connection is detected in same context
- Existing connection is detected in a different context
- No connection exists yet

ເກາຍc

STEP 4 : PROGRAMMING SEQUENCE AS RRAM CONNECTION PROGRAM VOLTAGE AND PULSE LENGTH ARE ALWAYS THE SAME

$$V_{program} = 1.5V$$
 for t=100ns

- New input is restricted to the selected column
- Programming step
 - Either makes a new connection between previous and new state
 - Either confirms an existing connection and strengthens it
- Current is limited by driving transistor

STEP 5: SHIFT OPERATION SYSTEM IS READY FOR NEXT INPUT

Sequence of abstract data= A-F-R-S-D-E-A-X-B 2D- pattern of connections

- Each step in the time sequence adds 1 connection or strengthens an existing one
- Time sequence is casted into the RRAM array as a 2D pattern

PREDICTING DATA = READING STEP DATA CAN BE PREDICTED BY READING WITH ALL COLUMNS SELECTED

Predicting next data frame

- Read all possible connections starting from the context-sensitive last known frame
- = union of predictions
- Current levels has statistical meaning identifying most likely prediction

READ output current

FLOW CHART ALGORITHM FOR CONTINUOUS UNSUPERVISED LEARNING

See my poster stand for details and discussion

ເມງອັ

HARDWARE PROOF ON RRAMTEST CHIP SIMPLE VERSION OF ALGORITHM DEMONSTRATES FEASIBILITY

- Technology with capped 5 nm HfO or TaO layer and TiN electrode
- Crossbar test structures
- Simple example of algorithm and measured corresponding conductance

ເງງອ

SIMULATED CONTROL EXAMPLES SHOW OPERATION

- Periodic function is translated as loop of connections
- Two periodic functions = 2 loops with weaker interconnects
- Noisy function adds several unwanted connections

SUPPRESSION OF INFREQUENT CONNECTIONS BY READ DISTURB SOLUTION FOR COPING WITH NOISE IN DATA

- Over-programming avoided by using read disturb mechanism as forget mechanism
- $V_{read} = -0.5 V \rightarrow$ causes a small (non-abrupt) reset to high resistive state

ເກາec

HIERARCHICAL STRUCTURE FOR MORE COMPLEX BEHAVIOR TIME SEQUENCES ARE DIVIDED OVER SHORT AND LONGER TERM STRUCTURE

- At each decision point in level 1, we address level 2 both read and program
- Level I = organization of states in temporal groups
- Level 2 = organization of temporal groups in larger groups

CONTROL ILLUSTRATES OPERATION AND EFFECTIVENESS

- Symmetric saw tooth has each point in two contexts
 - Indistinguishable with connection strength
 - Hierarchical approach is effective

SUMMARY & CONCLUSIONS

- Find a way to exploit filamentary RRAM properties in a learning algorithm
- Our answer
 - Continuous unsupervised learning
 - Temporal data
 - Hardware implementable
 - Filamentary RRAM used as stochastic memory technology
 - Read and program are at constant voltage and time
 - Read disturb as forget mechanism
- Sequence of data is stored as a structured 2D network of hardwired connections with statistical properties