

Fast classification using sparsely active
spiking networks

Hesham Mostafa
Institute of neural computation, UCSD

Artificial networks vs. spiking networks

input layer

hidden layer 1

hidden layer 2

output layer

......

backpropagation

......

input layer

hidden layer 1

hidden layer 2

output layer

......

???

Multi-layer networks are extremely
powerful function approximators.

Backpropagation is the most
effective method we know of to
solve the credit assignment problem
in deep artificial networks

How do we solve the credit assignment
problem in multi-layer spiking networks?

Neural codes and gradient descent

Rate coding:
● Spike counts/rates are discrete quantities
● Gradient is zero almost everywhere
● Only indirect or approximate gradient

descent training possible

3

4

2

5

input output input output

t1

t2

t3

tOut

t1

t2

t3

tOut

Temporal coding
● Spike times are analog quantities
● Gradient of output spike time w.r.t input

spike times is well-defined and non-zero
● Direct gradient descent training possible

The neuron model

dVmem(t)
dt

=Isyn (t)

Isyn(t)=∑
i

w i exp(−(t−t i))Θ(t−t i)

Θ(t−t i) : Step function

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

V
m

e
m

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

time
0.0

0.2

0.4

0.6

0.8

1.0

Is
yn

(firing threshold is 1)

Non-leaky integrate and fire neuron

Exponentially decaying synaptic current

The neuron's transfer function

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

V
m

e
m

t1 t2 t3 t4

tout

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

time
0.0

0.2

0.4

0.6

0.8

1.0

Is
yn

w1
w2

w3

w4

The neuron's transfer function

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

V
m

e
m

t1 t2 t3 t4

tout

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

time
0.0

0.2

0.4

0.6

0.8

1.0

Is
yn

w1
w2

w3

w4

In general:

Where C is the causal set of input
spikes (input spikes that arrive before
output spike)

The neuron's transfer function

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

V
m

e
m

t1 t2 t3 t4

tout

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

time
0.0

0.2

0.4

0.6

0.8

1.0

Is
yn

w1
w2

w3

w4

In general:

Where C is the causal set of input
spikes (input spikes that arrive before
output spike)

Time of the Lth output spike:

Change of variables

The neuron's transfer function then becomes piece-wise linear in the inputs
(but not the weights):

Where is the non-linearity?

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

v
m

e
m

zout =w1z1 +w2z2 +w3z3

w1 +w2 +w3 −1

ln(zout)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

time
0.0

0.2

0.4

0.6

0.8

1.0

sy
n
a
p
ti

c
cu

rr
e
n
t ln(z1) ln(z2) ln(z3) ln(z4)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

v
m

e
m

zout =w1z1 +w2z2 +w3z3 +w4z4

w1 +w2 +w3 +w4 −1

ln(zout)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

time
0.0

0.2

0.4

0.6

0.8

1.0

sy
n
a
p

ti
c

cu
rr

e
n
t ln(z1) ln(z2) ln(z3)ln(z4)

Non-linearity arises due to the input dependence of the causal set of input spikes

The piecewise linear input-output relation is reminiscent of Rectified Linear Units
(ReLU) networks

What is the form of computation
implemented by the temporal dynamics?

....

● To compute zout:
● Sort {z1,z2,..,zn}
● Find the causal set, C, by progressively considering more early spikes
● Calculate

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

v
m

e
m

zout =w1z1 +w2z2 +w3z3

w1 +w2 +w3 −1

ln(zout)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

time
0.0

0.2

0.4

0.6

0.8

1.0

sy
n
a
p
ti

c
cu

rr
e
n
t ln(z1) ln(z2) ln(z3) ln(z4)

Can not be reduced to the conventional ANN neuron: zout=f (∑
i

w i zi)

Backpropagation

To use backpropagation to train a multi-layer network, we need the
derivatives of the neuron's output w.r.t:

Weights Inputs

Time of first spike encodes neuron’s value. Each neuron is allowed to spike
only once in response to an input pattern:
● Forces sparse activity. Training has to make maximum use of each spike
● Allows quick classification response

Classification Tasks

● We can relate the time of any spike differentiably to the times of all spikes
 that caused it

● We can impose any differentiable cost function on the spike times of the
output layer and use backpropagation to minimize cost across training set

● In a classification setting, use a loss function that encourages the output
neuron representing the correct class to spike first

● Since we have an analytical input-output relation for each neuron, training
can be done using conventional machine learning packages
(Theano/Tensorflow)

MNIST task
● Pixel values were binarized.
● High intensity pixels spike early
● Low intensity pixels spike late

Classification is extremely rapid

● A decision is made when the first output neuron spikes
● A decision is made after only 25 spikes (on average) from the hidden layer

in the 768-800-10 network, i.e, only 3% of the hidden layer neurons
contribute to each classification decision

FPGA prototype

● 97% test set classification accuracy on MNIST in a 784-600-10 network (8-bit weights)
● Average number of spikes until classification: 139
● Only 13% of input to hidden weights are looked up
● Only 5% of hidden to output weights are looked up

0 100 200 300 400 500 600
Timesteps to classification

0

200

400

600

800

1000

1200

1400

C
o
u
n
t Mean : 167

Median : 162

0 20 40 60 80 100 120 140 160 180
Number of hidden layer spikes before output spike

0

200

400

600

800

1000

1200

1400

C
o
u

n
t Mean : 30

Median : 29

Acknowledgements

Institute of
neuroinformatics

Giacomo Indiveri
Tobi Delbruck

Gert Cauwenberghs
Sadique Sheik
Bruno Pedroi

Approximate learning

correct
label

+

N7 N8 N9

- -

+
+

N5 N6

N2 N3

+ -
- +

N4

N1

Output
layer

Hidden
layer

Input
layer

● Update Hidden→Output weights to encourage the right neuron to spike first
● Only update weights that actually contributed to output timings

Approximate learning

correct
label

+

+1
-(-1)

-1 } -1
+1}

N7 N8 N9

- -

+
+

N5 N6

N2 N3

+ -
- +

N4

N1

Output
layer

Hidden
layer

Input
layer

● Backpropagate time deltas using only the sign of the weights
● The final time delta at a hidden layer neuron can be obtained using 2

parallel popcount operations (count 1s in a bit vector) and a comparison.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

