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Artificial networks vs. spiking networks

input layer

hidden layer 1

hidden layer 2

output layer

......

backpropagation

......

input layer

hidden layer 1

hidden layer 2

output layer

......

???

Multi-layer networks are extremely
powerful function approximators. 

Backpropagation is the most 
effective method we know of to 
solve the credit assignment problem 
in deep artificial networks

How do we solve the credit assignment
problem in multi-layer spiking networks?



  

Neural codes and gradient descent

Rate coding: 
● Spike counts/rates are discrete quantities
● Gradient is zero almost everywhere
● Only indirect or approximate gradient 

descent training possible
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Temporal coding
● Spike times are analog quantities
● Gradient of output spike time w.r.t input 

spike times is well-defined and non-zero
● Direct gradient descent training possible



  

The neuron model

dVmem(t)
dt

=Isyn (t )

Isyn(t )=∑
i

w i exp(−(t−t i))Θ(t−t i)

Θ(t−t i) : Step function
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The neuron's transfer function
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The neuron's transfer function
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In general:

Where C is the causal set of input
spikes (input spikes that arrive before 
output spike)



  

The neuron's transfer function
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In general:

Where C is the causal set of input
spikes (input spikes that arrive before 
output spike)

Time of the Lth  output spike:



  

Change of variables

The neuron's transfer function then becomes piece-wise linear in the inputs
(but not the weights):



  

Where is the non-linearity?
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Non-linearity arises due to the input dependence of the causal set of input spikes

The piecewise linear input-output relation is reminiscent of Rectified Linear Units
(ReLU) networks



  

What is the form of computation 
implemented by the temporal dynamics?

....

● To compute zout:
● Sort {z1,z2,..,zn} 
● Find the causal set, C,  by progressively considering more early spikes
● Calculate
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Can not  be reduced to the conventional ANN neuron: zout=f (∑
i

w i zi)



  

Backpropagation

To use backpropagation to train a multi-layer network, we need the 
derivatives of the neuron's output w.r.t:

Weights Inputs

Time of first spike encodes neuron’s value. Each neuron is allowed to spike 
only once in response to an input pattern:
● Forces sparse activity. Training has to make maximum use of each spike
● Allows quick classification response 



  

Classification Tasks

● We can relate the time of any spike differentiably to the times of all spikes
   that caused it

● We can impose any differentiable cost function on the spike times of the 
output layer and use backpropagation to minimize cost across training set

● In a classification setting, use a loss function that encourages the output 
neuron representing the correct class to spike first

● Since we have an analytical input-output relation for each neuron, training 
can be done using conventional machine learning packages 
(Theano/Tensorflow)



  

MNIST task
● Pixel values were binarized.
● High intensity pixels spike early
● Low  intensity pixels spike late



  

Classification is extremely rapid

● A decision is made when the first output neuron spikes
● A decision is made after only 25 spikes (on  average) from the hidden layer

in the 768-800-10 network, i.e, only 3% of the hidden layer neurons 
contribute to each classification decision



  

FPGA prototype 

● 97% test set classification accuracy on MNIST in a 784-600-10 network (8-bit weights)
● Average number of spikes until classification: 139
● Only 13% of input to hidden weights are looked up
● Only 5% of hidden to output weights are looked up
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Approximate learning
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● Update Hidden→Output weights to encourage the right neuron to spike first
● Only update weights that actually contributed to output timings



  

Approximate learning
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● Backpropagate time deltas using only the sign of the weights
● The final time delta at a hidden layer neuron can be obtained using 2

parallel popcount operations (count 1s in a bit vector) and a comparison.
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