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Why do we need more efficient 
computers?
 Google Deep Learning Study

 16000 core, 1000 machine GPU cluster
 Trained on 10 million 200x200 pixel images
 Training required 3 days
 Training dataset size: no larger than what  

can be trained in 1 week
 What would they like to do?

 ~2 billion photos uploaded to internet per day (2014)
 Can we train a deep net on one day of image data?
 Assume 1000x1000 nominal image size, linear scaling 

(both assumptions are unrealistically optimistic)
 Requires 5 ZettaIPS to train in 3 days

(ZettaIPS=1021 IPS; ~5 billion modern GPU cores)
 World doesn’t produce enough power for this!
 Data is increasing exponentially with time

 Need >1016-1018 instruction-per-second on 1 IC
 Less than 10 fJ per instruction energy budget
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Q. Le, IEEE ICASSP 2013



Neural Inspired Computational ElementsInspired by Hasler and Marr,
Frontiers in Neuroscience, 2013

“Let physics do 
the computation” 
Our brain is the 
ultimate example 
of this paradigm

Moore’s Law Era: 
Density scaling and 
Dennard Power Density 
Scaling
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*Caveat: Biological neurons 
probably do not perform MACs
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Crossbar Theoretical Limits

 Potential for 100 Tbit of ReRAM on chip
 If each can perform 1M computations of 

interest per second (1 M-op):
 1012 active devices/chip x 106 cycle per 

second 1018 comps per second per chip
 Exascale-computations per sec on one chip!

 In order to not melt the chip, entire area 
must be limited to ~100W

 Allowed energy per operation = P x t/op 
= 100W / 1018 = 10-16 = 100 aJ/operation

 10nm line capacitance = 10 aF
 Can charge line to 1V with 10 aJ
 Drawback: “only” ~100B transistors/chip
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G1,2

 Electronic Vector Matrix Multiply

How does a crossbar perform a 
useful computation per device?
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Mapping Backprop to a Crossbar

Vector Matrix Multiply, Rank 1 Update: 
Key kernel used in many algorithms

Convert analog 
inputs to varying 
length voltage 
pulses
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Accelerator Architecture
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Device to Algorithm Model
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Experimental Device Nonidealities

 Ideally weight would increase and decrease 
linearly proportional to learning rule result

 Experimental devices have several 
nonidealities: Write Variability, Write 
Nonlinearity, Asymmetry, Read Noise

 Circuits also have A/D, D/A noise, parasitics
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ReRAM Analog Characterization
SET RESET

 Use as a neuromorphic weight requires precise analog tuning
 Dataset requires 1000 repeated SET and RESET pulses 
 Nominal pulse values 
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 RESET: -1V 10ns RT/PW/FT
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Repeated Pulsed Cycling

12

10 ns 1 µs100 ns

SET

RESET

100 onoff cycles, 
(200k pulses)
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TaOx ReRAM in Backprop Training
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How can training accuracy be improved?

Increasing Network Size
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Li-Ion Synaptic Transistor for Analog 
Computation (LISTA)
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G-V for LISTA Transistor

E. Fuller et al, Adv Mater, accepted 2017
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LISTA > 200 states

PCM Array

Analog State Characterization

15GW Burr et al, IEEE TED 2015

TaOx ReRAM

E. Fuller et al, Adv Mater, accepted 2017
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LISTA-device Performance for Backprop Algorithm
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Data set # Training 
Examples

# Test 
Examples

Network Size

UCI Small Digits[1] 3,823 1,797 64×36×10
File Types[2] 4,501 900 256×512×9

MNIST Large Digits[3] 60,000 10,000 784×300×10

Increasing Network Size

E. Fuller et al, Adv Mater, accepted 2017
See Poster for Detail!
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Electrochemical Neuromorphic 
Organic Device (eNode)
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van de Burgt … Saleo, Nature Mater., 2017 in press
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Electrochemical Neuromorphic 
Organic Device (eNode)
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See Poster for Detail!
van de Burgt … Saleo, Nature Mater., 2017 in press
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 Allows much 
closer to ideal with 
high variability 
TaOx device 

 LISTA achieves 
essentially perfect 
accuracy

 Requires tradeoff 
of energy/latency 
for accuracy –
exact tradeoff 
depends on 
algorithm reqs.
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Agarwal et al, submitted 2017

Circuit-Level Improvement
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Energy and Latency Analysis

20

SRAM Digital ReRAM Analog ReRAM 

Equivalent Area
~450 1k × 1k matrices

400 mm2 32 mm2 11 mm2

Total Time
per 1-layer cycle 
3 Ops: 2 reads, 1 write

~ 100 µs
Transpose read 
dominated

~ 60 µs
Update dominated:
10 ns write

~ 5 µs
Temporal coding dominated:
256 levels

Total Energy
per 1-layer cycle

~ 1000 nJ
Multiply dominated

~ 700 nJ
Multiply dominated

~ 15 nJ

Matrix Storage Area 95% 50% 17%

Periphery Area 5% 50% 100%
crossbar  on top of periphery

Matrices per
400 mm2 Chip

~450 ~5,500 ~15,000

Energy / Operation 330 fJ 230 fJ 5 fJ

Operations/Second 14 TeraOps/S 270 TeraOps/S 9,000 TeraOps/S
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Energy and Latency Analysis
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Matrix Storage
1024×1024

[Values are per-
array]

SRAM Digital ReRAM Analog ReRAM 
Crossbar

Area 800,000 µm2 35,000 µm2 Array: 4,300 µm2

Periphery: 8,460 µm2

Read 30 nJ / 15 µs 15 nJ / 4 µs ~ 3 nJ / ~ 1.5 µs

Read
Transpose 300 nJ / 65 µs 15 nJ / 4 µs ~ 3 nJ / ~ 1.5 µs

Write 30 nJ / 15 µs 50 nJ / 45 µs 3 nJ / ~ 1.5 µs

Multiply
Accumulators [256 in 

parallel]

Area 19,000 µm2

FREERun: 1M 
ops 200 nJ / 4 µs

Output LUT
Area 1,400 µm2

Uses Digital Methods
Read 1 nJ / 1 µs

Input/Output Buffers
[8 bits]

Area 13,000 µm2

Uses Digital Methods
Per Run ~ 0.1 nJ

Vector Cache*
16 entries 1024x8-bit

[Values are per 
1024x8 vector]

Area 11,250 µm2 500 µm2

Uses Digital MethodsRead ~ 0.1 nJ / ~ 0.2 µs ~ 1 nJ / 4 ns

Write ~ 0.1 nJ / ~ 0.2 µs ~ 1 nJ / 50 ns
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Conclusion
 Dennard (constant power density) scaling has ceased and 

Moore’s law is slowing
 New paradigms like neuromorphic computing will be required 

for sub-fJ computing
 We now require a device through system design mentality
 Motivation behind CrossSim
 See poster for more detail on CrossSim

 Oxide-based resistive memory offers intriguing device options 
for both eras

 Novel LISTA and eNode devices, offer significant potential in 
the development of a low energy neural accelerator
 See LISTA and eNode posters for more detail on these
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Thank you! 
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ENIAC

25

Electronic Numerical Integrator And Computer
Developed by US Army/U Penn – 1946 

150 kW, 357 FLOPs
400 J/FLOP (10 bit)
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Where Are we Today?

 Single Unit: Nvidea Tesla P100 GPU
 Most advanced GPU processor specs, released 

late 2016
 Target’s deep learning and neural applications
 20 TFLOPs 16 bit peak performance w/ peak 

power dissipation of 300W
 70 GFLOPs/watt or about 15 pJ/FLOP (16 bit)

 Supercomputer: Sunway TaihuLight (China)
 Top supercomputer in the world
 ShenWei processor
 90 PFLOPs peak, 15 MW power
 6 GFLOPs/W or about 170 pJ/FLOP

 Need >1000x improvement to tackle 
internet-scale problems

26
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Basics of Neural Networks
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Another Analogy

𝑤𝑤2𝑤𝑤1

Neuron

Mathematical

Inputs

z = �
𝑖𝑖=0

𝑛𝑛

𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

𝑤𝑤𝑛𝑛

𝑥𝑥2𝑥𝑥1 𝑥𝑥𝑛𝑛

Weights

y

z

y =
1

1 + 𝑒𝑒−𝑧𝑧

𝐺𝐺2𝐺𝐺1

I = �
𝑖𝑖=0

𝑛𝑛

𝐺𝐺𝑖𝑖𝑉𝑉𝑖𝑖

𝐺𝐺𝑛𝑛

𝑉𝑉2𝑉𝑉1 𝑉𝑉𝑛𝑛

Electrical



Neural Inspired Computational Elements

Why is it essential to cram so many 
computations on a single chip?

Crossbar accelerator cores
29

Can you simply connect millions of ultra-efficient chips?
Yes, but every time data leaves the chip, it is elevated in the comm hierarchy
Energy efficiency per operation is reduced
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TaOx ReRAM in Backprop Training

30

Data set # Training 
Examples

# Test 
Examples

Network Size

UCI Small Digits[1] 3,823 1,797 64×36×10
File Types[2] 4,501 900 256×512×9

MNIST Large Digits[3] 60,000 10,000 784×300×10

Increasing Network Size

1 µs pulses
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ReRAM Measurements
 DC Current-voltage “loops” sweeps 

are not time-controlled
 Excessive heating and early wearout
 Do not provide info on dynamics

 Physical switching < 10ns
 Need pseudo RF setup to measure

 Ground/signal, conductor backed
 Agilent B1530 module
 10 ns RT/FT, 10 ns PW
 1 V nominal, ~140 mV overshoot

TiN
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 Shorter pulses may be employed to lower conductance switching range
 Linearity qualitatively similar across Pulse Width (PW) and Edge Time (ET)

 Best for SET at 100 ns
 Best for RESET at 1 us

 Relative conductance change increased with shorter Pulse Width / Edge 
Time

Effect of Pulse Width and Edge Time

Nominal Pulse Voltage Values: SET: +1 V RESET: -1 V
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