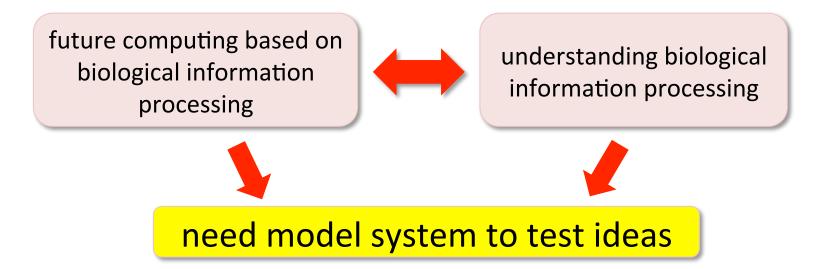
The BrainScaleS physical model machine From commissioning to real world problem solving

^{5th} Neuro Inspired Computational Elements Workshop NICE 2017

> Karlheinz Meier Ruprecht-Karls-Universität Heidelberg

meierk@kip.uni-heidelberg.de @brainscales

Why brain inspired computing ?



Two **fundamentally different** modeling approaches:

• NUMERICAL MODEL (Turing)

represents model parameters as binary numbers

PHYSICAL MODEL (not Turing)

represents model parameters as physical quantities → voltage, current, charge (like the biological brain)

can be combined to form a hybrid system

Digital

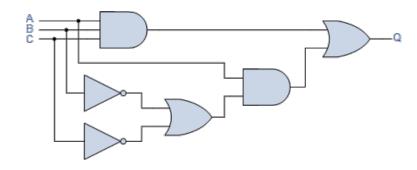
- Discrete values of physical variables
- Computation by Boolean algebra
- One wire one bit of information
- Signal restored after gate

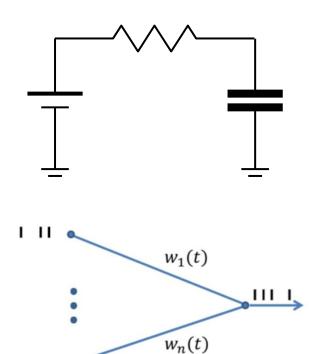
Analog

- Continuous values of physical variables
- Computation by component physics
- One wire many bits of information
- Signal not restored after stage

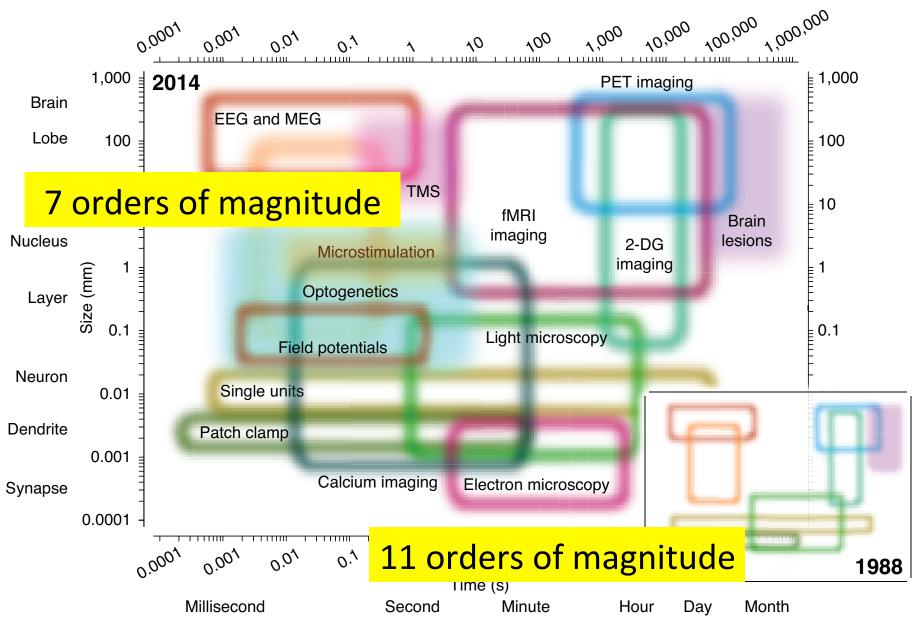
Nature / mixed-signal

- Local analogue computation
- Binary communication by spikes
- Signal restoration

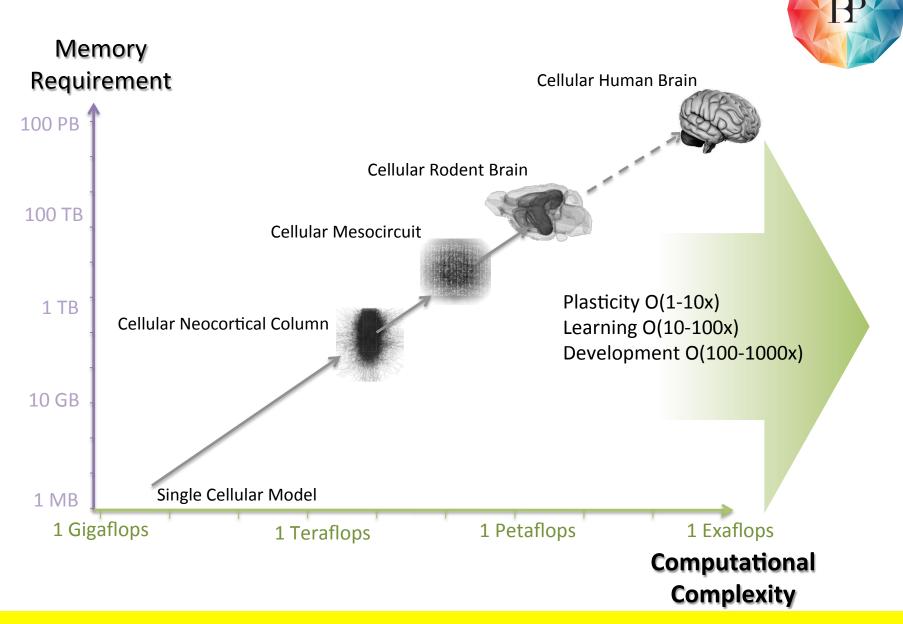




Modern Neuroscience : Access to multiple Scales in Space and Time

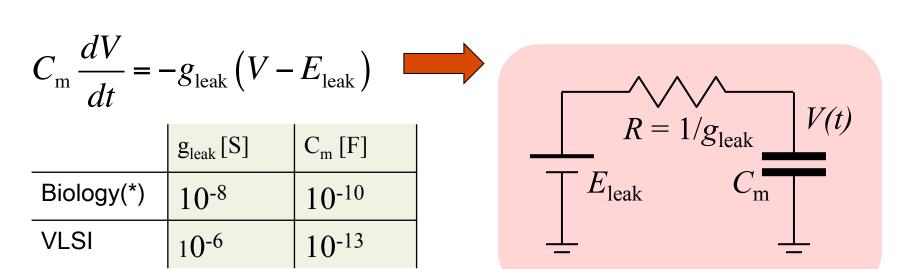


Sejnowski et al, Nature Neuroscience, 2014



Subcellular detail and plasticity require advances in strong scaling !

Time <i>Scales</i>	Nature	Simulation			
Causality Detection	10 ⁻⁴ s	0.1 s			
Synaptic Plasticity	1 s	1000 s			
Learning	Day	1000 Days			
Development	Year	1000 Years			
12 Orders of Magnitude					
Evolution	> Millenia	> 1000 Millenia			
> 15 Orders of Magnitude					



(*) Brette/Gerstner, J. Neurophysiology, 2005

Physical Model System

(+ non-linearity)

Continuous Time Integrating Neural Cell Membrane

$$c_{\rm m} \frac{dV}{dt} = -g_{\rm leak} (V - E_1) + \sum_k p_k g_k (V - E_x) + \sum_l p_l g_l (V - E_i)$$

$$p_{k,l}(t) \qquad \text{exponential onset and decay (PSP shape)}$$

$$g_{k,l} \qquad 0 \text{ to } g_{\rm max} (\text{"weights"})$$

effective membrane time-constant $c_{\rm m}/g_{\rm total}$ is time-dependent

"Time" is imposed by internal physics, not by external control

Brainsca

ScaleS

$10\ {\rm Rationales}$ for the Physical Model System

- Mixed-Signal (Local analog computation, binary spike communication)
- Driven by architecture, not devices (180nm & 65nm CMOS)
- High Neuron Input Count (>10.000)
- Configurability (cell parameters, connections) -> Universality
- Scalability : ChipScale (10⁵) -> WaferScale (10⁸) -> Systems (>10⁹)
- Acceleration x10.000, consistent time constants (1 day compressed to 10 seconds)
- Short-term und long-term Plasticity
- Upgradability with unchanged system architecture
- Hybrid Operation, closed loop experiments
- Non-Expert User Access

Objective : Exploit configurability and acceleration

- rapid exploration of large parameter spaces
- cover short and long timescale circuit dynamics
- perform computing in the presence of spatial and temporal noise

BrainScaleS neural network wafer

200.000 AdEx neurons 50 Million synapses

X10.000 acceleration

insulated

gate

Plastic Synapses, 50.000.000 Million Instances on Wafer, Length Scale 10 μm, volatile, fast, 4-bit SRAM Weights

DAC

Neuron

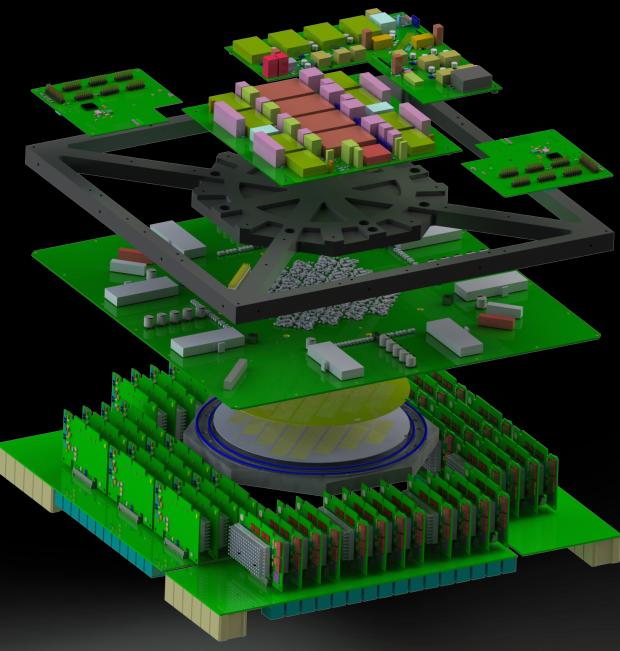
postsynaptic event (current)

presynaptic

event

(voltage)

AdEx Neurons, 200.000 Instances on Wafer, Length Scale 300 μm, NON-volatile, slow, Analog Floating Gate Parameter Storage Poisson Noise Generators

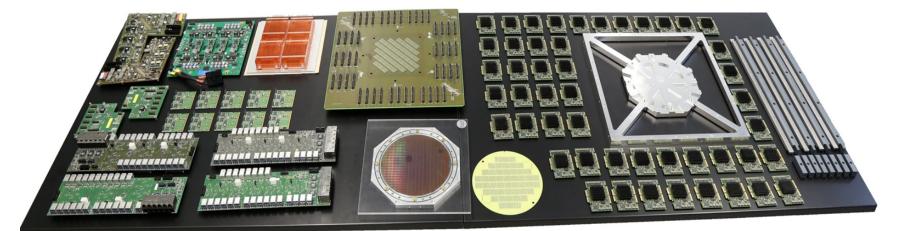


Wafer-scale integration of analog neural networks, J. Schemmel, J, Fieres and K. Meier In : Proceedings of IJCNN (2008), IEEE Press, 431

Physical Model, local analogue computing, binary continuous time communication

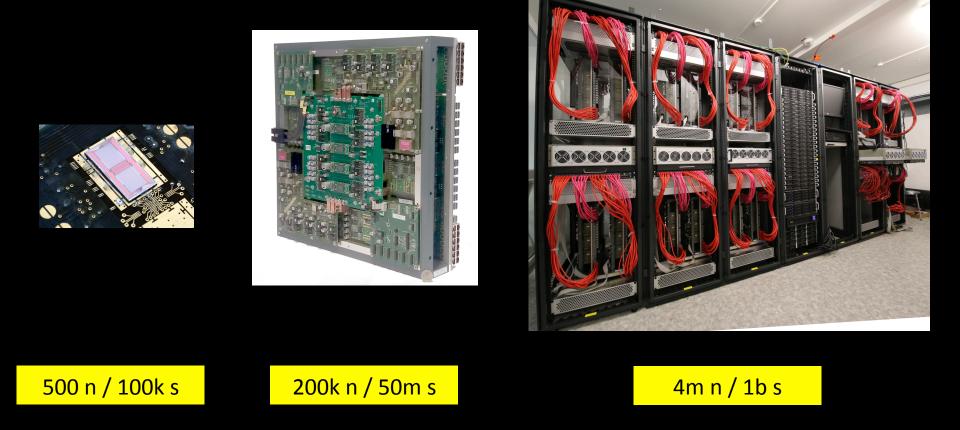
Wafer-Scale Integration of 200.000 neurons and 50.000.000 synapses on a single 20 cm wafer

Short term and long term plasticity, 10.000 faster than real-time



x 20 : 2500 PCBs

Scaling up

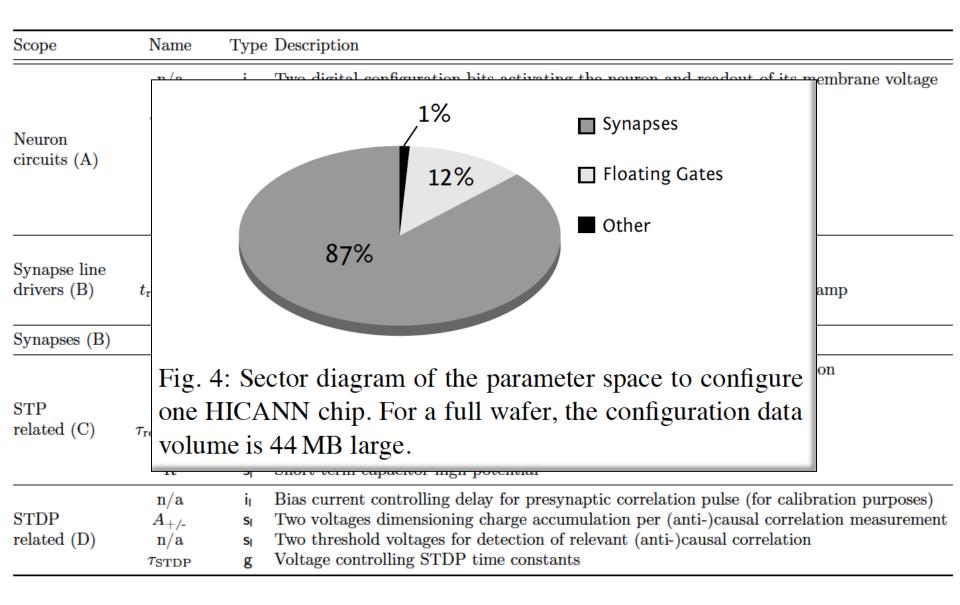


Big machine in commissioning phase since March 30th 2016 Part the Human Brain Project (HBP) platform system

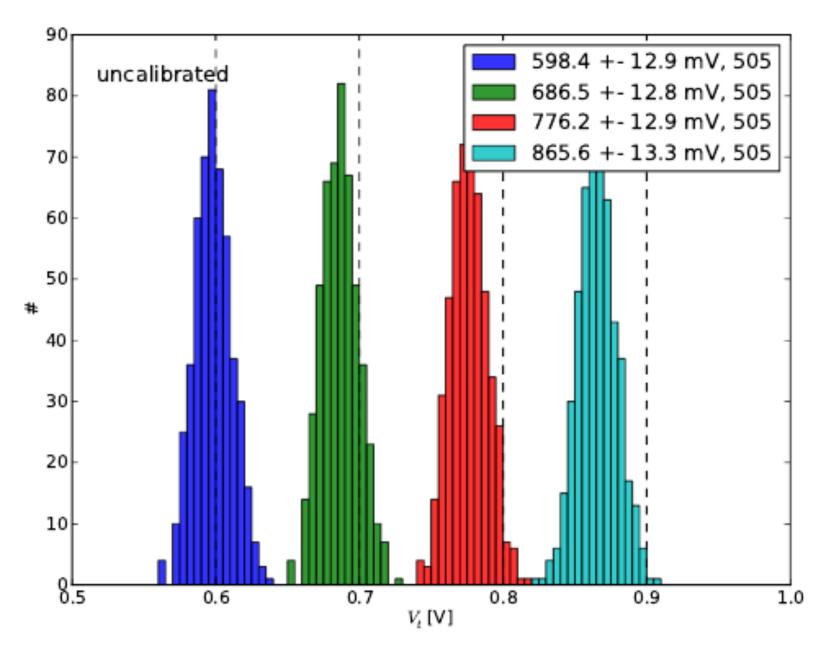
Configuration Space 40 MB for a full Wafer

Scope	Name	Type	Description
Neuron circuits (A)	${ m n/a} g_{ m l} \ au_{ m refrac} \ E_{ m l} \ E_{ m inh} \ E_{ m exc} \ V_{ m th} \ V_{ m reset}$	in in Sn Sn Sn Sn Sn Sn	Two digital configuration bits activating the neuron and readout of its membrane voltage Bias current for neuron leakage circuit Bias current controlling neuron refractory time Leakage reversal potential Inhibitory reversal potential Excitatory reversal potential Firing threshold voltage Reset potential
Synapse line drivers (B)	${ m n/a}\ { m n/a}\ { m t_{rise}, t_{fall}}\ {g_i^{ m max}}$	ն ն ն	Two digital configuration bits selecting input of line driver Two digital configuration bits setting line excitatory or inhibitory Two bias currents for rising and falling slew rate of presynaptic voltage ramp Bias current controlling maximum voltage of presynaptic voltage ramp
Synapses (B)	w	is	4-bit weight of each individual synapse
STP related (C)	${f n/a}\ U_{ m SE}\ n/a$ ${f n/a}\ au_{ m rec}, au_{ m facil}\ I$ R	iı iı sı sı sı	Two digital configuration bits selecting short-term depression or facilitation Two digital configuration bits tuning synaptic efficacy for STP Bias voltage controlling spike driver pulse length Voltage controlling STP time constant Short-term facilitation reference voltage Short-term capacitor high potential
STDP related (D)	${f n/a} A_{+/-} \ {f n/a} ag{ au_{STDP}}$	iı sı sı g	Bias current controlling delay for presynaptic correlation pulse (for calibration purposes) Two voltages dimensioning charge accumulation per (anti-)causal correlation measurement Two threshold voltages for detection of relevant (anti-)causal correlation Voltage controlling STDP time constants

Configuration Space 40 MB for a full Wafer



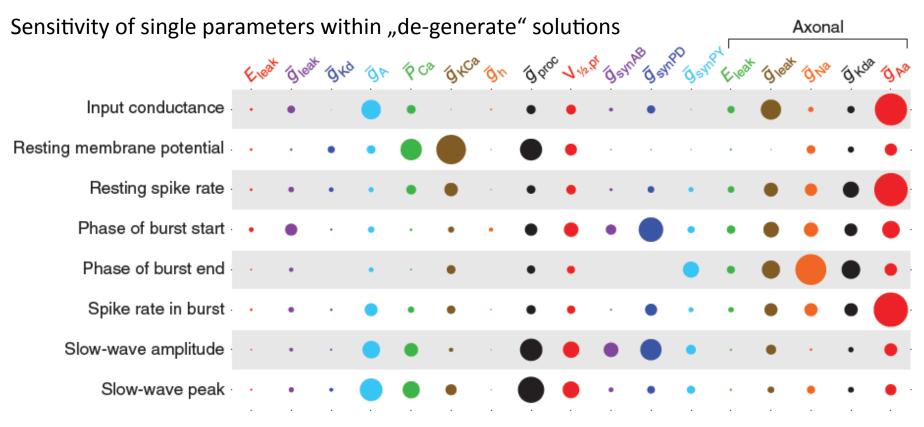
Challenge and Opportunity : Variability

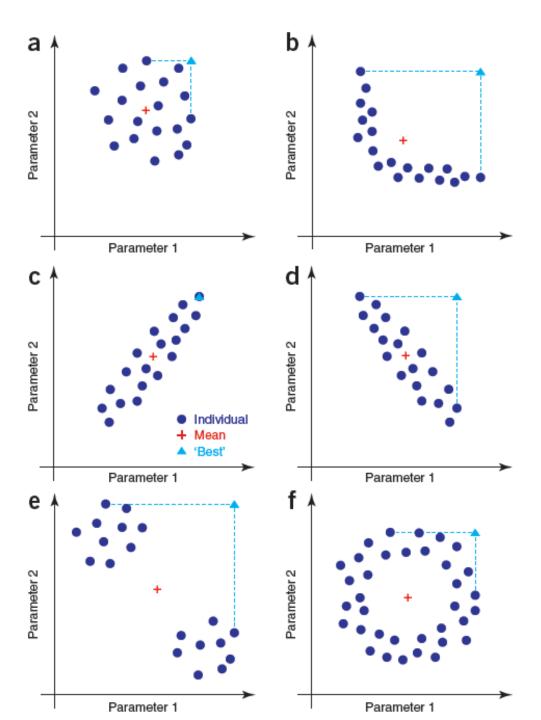


Pyloric rhythm of the crustacean stomatogastric ganglion

20.000.000 model networks created with 17 random cell parameters, fixed connectivity (Neuron)

400.000 networks found with "identical (de-generate)" timing behaviour in measured biological range

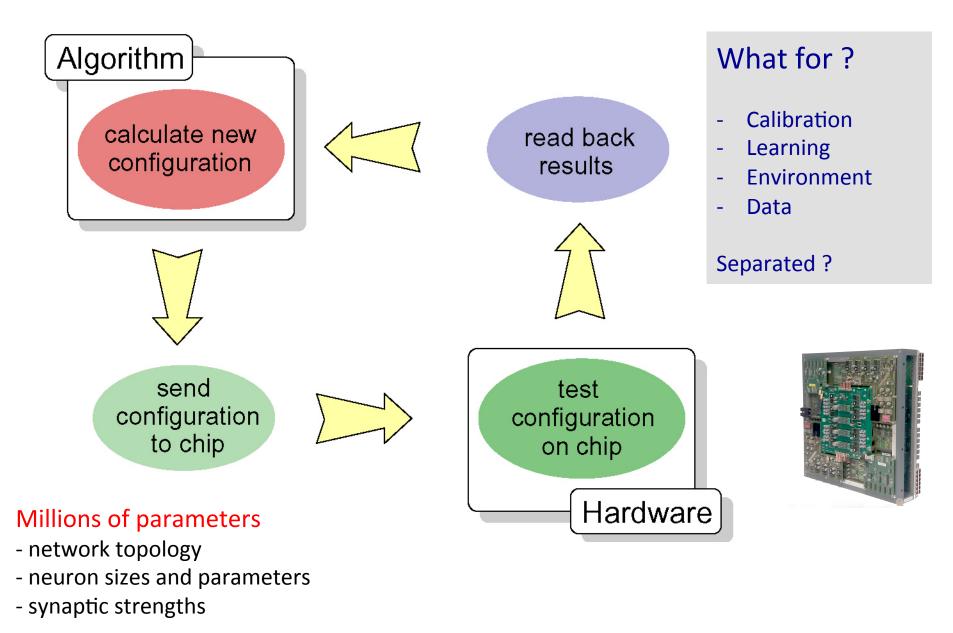


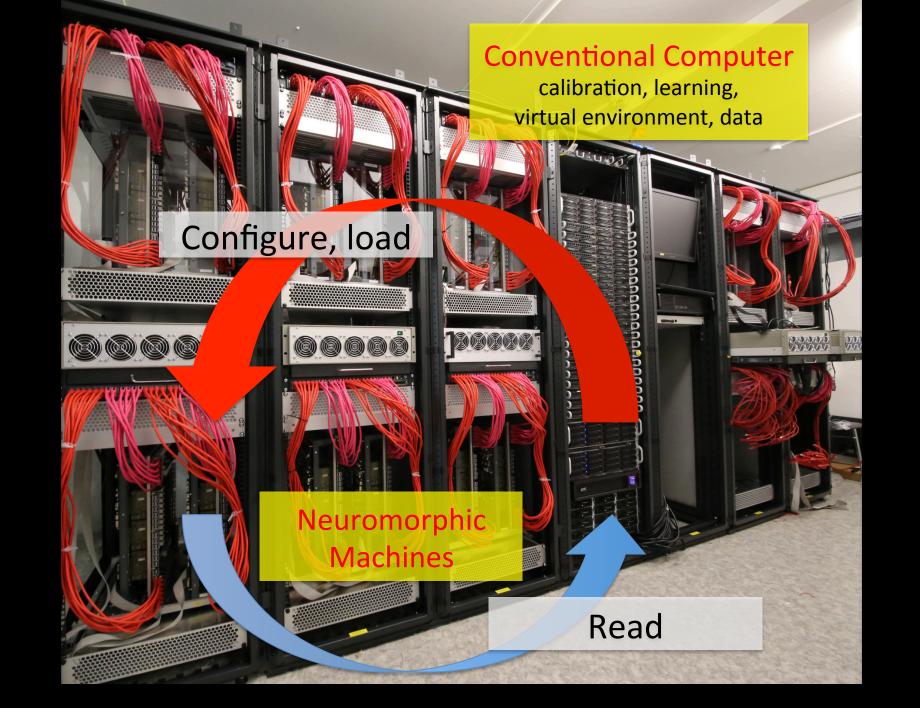


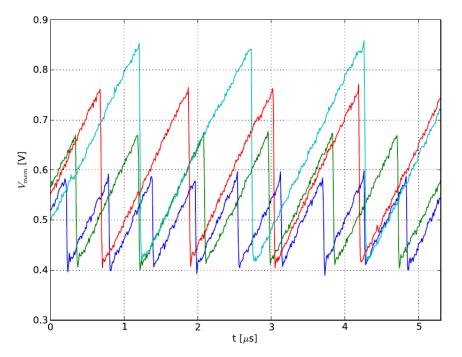
Variability has to be at the right place ...

Marder, Taylor Nature Neuroscience 14, Nr 2, 2011

Hardware-In-the-Loop







Calibration

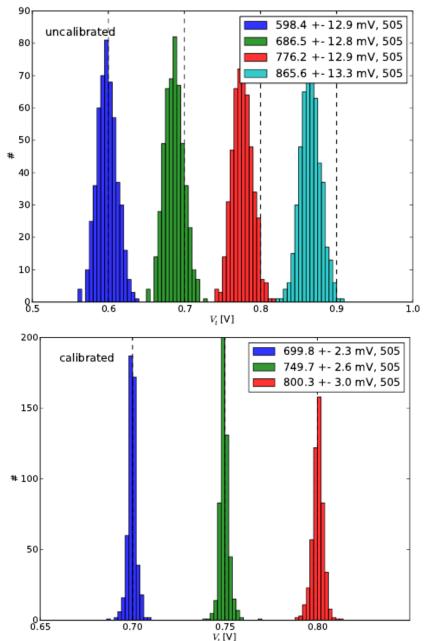
Make BrainScaleS like a digital simulator ?

OR

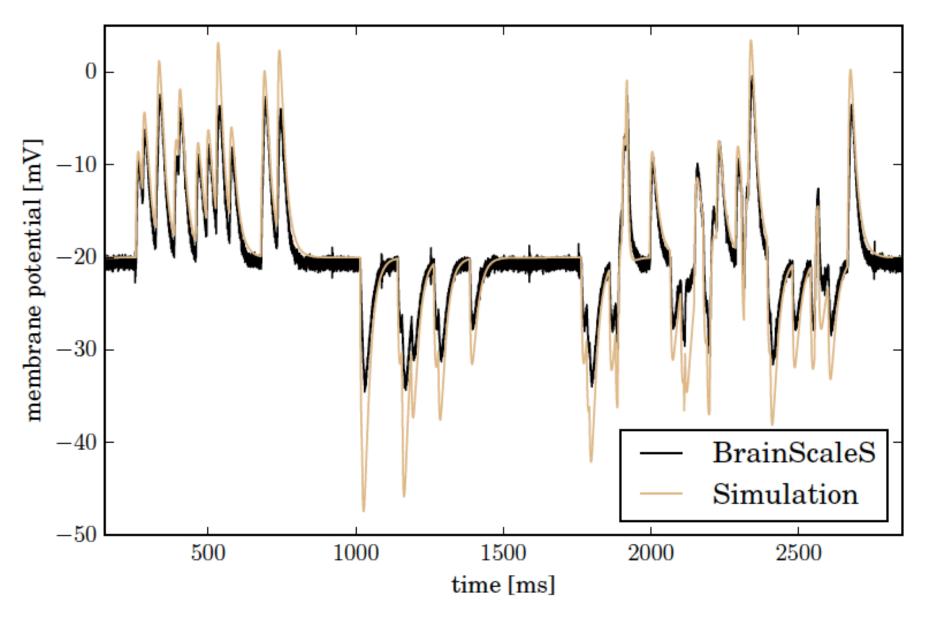
Put variabiity at the right place !

By hand ? – By self learning !

Sebastian Schmitt, Paul Müller

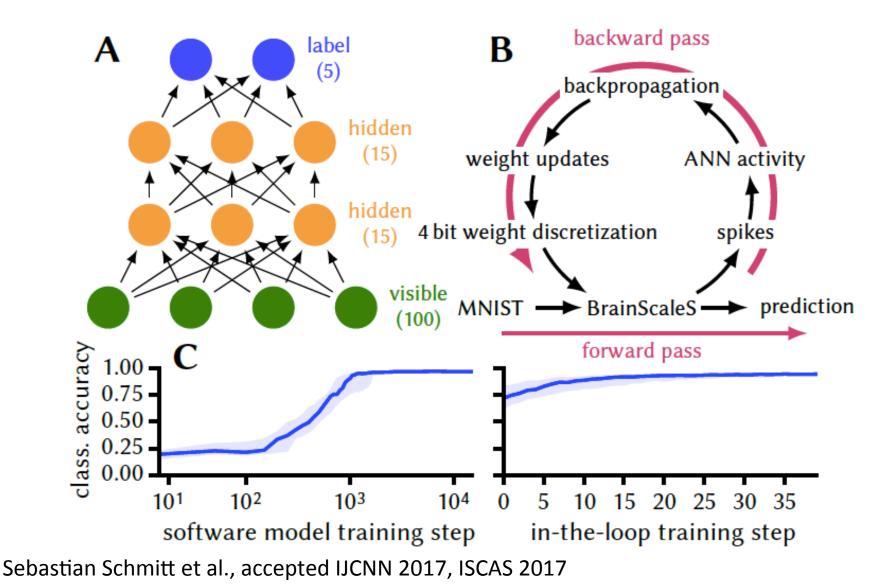


After hardware in-the-loop calibration

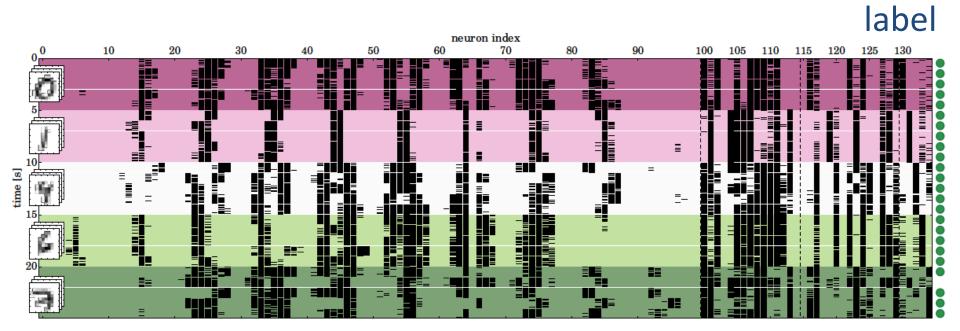


Sebastian Schmitt et al., accepted IJCNN 2017

Feed-forward, rate-based. 4-layer spiking network MNIST classification on a physical model machine performance before and after hardware in-the-loop learning



MNIST classification on a physical model machine Neuronal firing activity after hardware in-the-loop learning



input

2 x hidden

Sebastian Schmitt et al., accepted JCNN 2017, ISCAS 2017

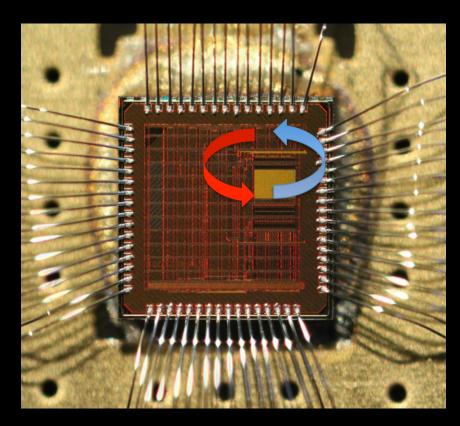
Time <i>Scales</i>	Nature + Real-time	Simulation	Accelerated Model			
Causality Detection	10 ⁻⁴ s	0.1 s	10⁻ ⁸ s			
Synaptic Plasticity	1 s	1000 s	10 ⁻⁴ s			
Learning	Day	1000 Days	10 s			
Development	Year	1000 Years	3000 s			
12 Orders of Magnitude						
Evolution	> Millenia	> 1000 Millenia	> Months			
> 15 Orders of Magnitude						

New key features

- Improved parameter storage
- Hybrid plasticity by on-chip processor : on-chip loops
 - Input : timing correlations, rates, membrane potentials, external signals
 - Change : synaptic weights, network topology, neuron parameters
- Structured neurons
 - NMDA plateau potentials create nonlinear dendrites
 - Calcium spikes for coincidence detection between basal and distal inputs
 - Na spikes (action potentials) communicate with other neurons

BrainScaleS-2

62 nm prototype chip in the lab



- Evaluation system by mid-2018
- Full-size prototypes and wafer masks by mid-2020

Final Thoughts

- After 10 years of development the BrainScaleS large scale physical hardware system is being commissioned and delivers first results
- Fully non-Turing, physical model computing can solve established machine learning tasks
- 2nd generation physical model systems start to offer very advanced accelerated local learning capabilities and exploitation of dendritic computation

Goal : Build a continuously learning cognitive machine

Eric Müller DEMO : Neuromorphic Hardware In-The-Loop: Training a Deep Spiking Network on the BrainScaleS Wafer-Scale System

Johannes Schemmel Training and Plasticity Concepts of the BrainScaleS Neuromorphic Systems