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Why	brain	inspired	compu>ng	?	
future	compu>ng	based	on	

biological	informa>on	
processing	

understanding	biological	
informa>on	processing	

Two	fundamentally	different	modeling	approaches:	

•  NUMERICAL	MODEL	(Turing)	

represents	model	parameters	as	binary	numbers	

•  PHYSICAL	MODEL	(not	Turing)		

represents	model	parameters	as	physical	quan>>es	
→	voltage,	current,	charge	(like	the	biological	brain)	

can	be	
combined	to	
form	a	hybrid	
system	

need	model	system	to	test	ideas	



Digital	
	

•  Discrete	values	of	physical	variables	
•  Computa>on	by	Boolean	algebra	
•  One	wire	one	bit	of	informa>on	
•  Signal	restored	aPer	gate	
	

Analog	
	

•  Con>nuous	values	of	physical	variables	
•  Computa>on	by	component	physics	
•  One	wire	many	bits	of	informa>on	
•  Signal	not	restored	aPer	stage	
	

Nature	/	mixed-signal	
• 	Local	analogue	computa>on	
• 	Binary	communica>on	by	spikes	
• 	Signal	restora>on	
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a single technology is not trivial, making 
meaningful causal relationships among data 
sets obtained with very different technologies 
even more difficult to achieve.

Second, different animal models are used 
to study different problems: flies, worms, fish, 
mice, rats, monkeys and humans all have their 
place. It is often unclear how to extrapolate 
from worm data to a mammalian nervous 
system, for example, or from in vitro prepara-
tions to in vivo preparations. Each model has 
its distinct virtues, and new efforts to integrate 
information across species and technologies 

but rarely if ever in a broad behavioral context.
Different techniques differ also in concepts 

and vocabularies, in background assumptions 
and experimental norms. Decision-making, 
for example, might be studied at the level 
of populations of single-cell recordings in 
 monkeys or by fMRI in humans or by lesions 
in rats or by molecular and optical techniques 
in mice. These differences mean that standard-
ization in neuroscience must be made relative 
to a technique and that cross-level and cross-
technique data integration cannot  easily be 
automated. Standardizing data collected with 

Big data, the buzz phrase of our time, has 
arrived on the neuroscientific scene, as it has 
already in physics, astronomy and genom-
ics. It offers enlightenment and new depths 
of understanding, but it can also be a bane if 
it obscures, obstructs and overwhelms. The 
arrival of big data also marks a cultural tran-
sition in neuroscience, from many isolated 
‘vertical’ efforts applying single techniques 
to single problems in single species to more 
‘horizontal’ efforts that integrate data collected 
using a wide range of techniques, problems 
and species. We face five main issues in mak-
ing big data work for us.

First, data in neuroscience exist at an aston-
ishing range of scales of both space and time. 
Neuroscientific data are obtained from a wide 
range of techniques, from patch clamping to 
optogenetics to fMRI (Fig. 1). Most of these 
techniques are used one at a time. One lab will 
record spikes from an array of neurons, but not 
be able to determine which types of neurons 
they are or how they are connected to other 
neurons. Another lab will reconstruct the 
 wiring diagram of the same circuit, but with-
out recording data to identify the properties 
of the reconstructed neurons. In some heroic 
cases, functional data have been laboriously 
combined with anatomical reconstructions1, 

Putting big data to good use in neuroscience
Terrence J Sejnowski, Patricia S Churchland & J Anthony Movshon

Big data has transformed fields such as physics and genomics. Neuroscience is set to collect its own big data sets, but to 
exploit its full potential, there need to be ways to standardize, integrate and synthesize diverse types of data from different 
levels of analysis and across species. This will require a cultural shift in sharing data across labs, as well as to a central role 
for theorists in neuroscience research.
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Figure 1  The spatiotemporal domain of neuroscience and of the main methods available for the 
study of the nervous system in 2014. Each colored region represents the useful domain of spatial 
and temporal resolution for one method available for the study of the brain. Open regions represent 
measurement techniques; filled regions, perturbation techniques. Inset, a cartoon rendition of 
the methods available in 1988, notable for the large gaps where no useful method existed9. The 
regions allocated to each domain are somewhat arbitrary and represent our own estimates. EEG, 
electroencephalography; MEG, magnetoencephalography; PET, positron emission tomography; VSD, 
voltage-sensitive dye; TMS, transcranial magnetic stimulation; 2-DG, 2-deoxyglucose.
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Sejnowski	et	al,	Nature	Neuroscience,	2014	

Modern	Neuroscience	:	Access	to	mul>ple	Scales	in	Space	and	Time	

7	orders	of	magnitude	

11	orders	of	magnitude	



ComputaHonal	
Complexity	

Memory	
Requirement	

1	MB	

10	GB	

1	TB	

100	TB	

100	PB	

Cellular	Neocor>cal	Column	

Cellular	Mesocircuit	

Cellular	Rodent	Brain	

Cellular	Human	Brain	

1	Gigaflops	 1	Teraflops	 1	Petaflops	 1	Exaflops	

Single	Cellular	Model	

Subcellular	detail	and	plas>city	require	advances	in	strong	scaling	!	

Plas>city	O(1-10x)	
Learning	O(10-100x)	
Development	O(100-1000x)	



Nature	 Simula>on	

Causality	Detec>on	 10-4	s	 0.1	s	

Synap>c	Plas>city	 1	s	 1000	s	

Learning	 Day	 1000	Days	

Development	 Year	 1000	Years	

12	Orders	of	Magnitude	

Evolu>on	 >	Millenia	 >	1000	
Millenia	

>	15	Orders	of	Magnitude	

TimeScales	



7	

Physical	Model	System	
Con>nuous	Time	Integra>ng	Neural	Cell	Membrane	
(+	non-linearity)	

Cm
dV
dt

= −gleak V −Eleak( )

Cm 

R = 1/gleak 

Eleak 

V(t) 
gleak [S] Cm [F] 

Biology(*) 10-8 10-10 
VLSI 10-6 10-13 

(*) Brette/Gerstner, J. Neurophysiology, 2005 

„Time“	is	imposed	by	internal	physics,	not	by	external	control	
€ 

cm
dV
dt

= −gleak V − E l( ) + pkgk V − Ex( )
k∑ + plgl V − E i( )

l∑
pk,l(t)  exponential onset and decay (PSP shape) 
gk,l   0 to gmax (“weights”) 

effective membrane time-constant cm /gtotal is time-dependent 



	
Ø  Mixed-Signal	(Local	analog	computa>on,	binary	spike	communica>on)	
Ø  Driven	by	architecture,	not	devices	(180nm	&	65nm	CMOS)	
Ø  High	Neuron	Input	Count	(>10.000)	
Ø  Configurability	(cell	parameters,	connec>ons)	->	Universality	
Ø  Scalability	:	ChipScale	(105)	->	WaferScale	(108)	->	Systems	(>109)	
Ø  Accelera>on	x10.000,	consistent	>me	constants	(1	day	compressed	to	10	seconds)	
Ø  Short-term	und	long-term	Plas>city	
Ø  Upgradability	with	unchanged	system	architecture	
Ø  Hybrid	Opera>on,	closed	loop	experiments	
Ø  Non-Expert	User	Access	
	
Objec>ve	:	Exploit	configurability	and	accelera>on	
	

	-	rapid	explora>on	of	large	parameter	spaces	
	-	cover	short	and	long	>mescale	circuit	dynamics	
	-	perform	compu>ng	in	the	presence	of	spa>al	and	temporal	noise	

10	Ra>onales	for	the	Physical	Model	System	
	



BrainScaleS	neural	network	wafer	
	

200.000	AdEx	neurons	
50	Million	synapses	

	

X10.000	accelera>on	



AdEx	Neurons,	200.000	Instances	on	Wafer,	Length	Scale	300	µm,	
NON-vola>le,	slow,	Analog	Floa>ng	Gate	Parameter	Storage	

Poisson	Noise	Generators	

Plas>c	Synapses,	
50.000.000	Million	
Instances	on	Wafer,	
Length	Scale	10	µm,	

vola>le,	fast,	
4-bit	SRAM	Weights	

High	Input	Count	
Network	Chips,	400	
Instances	on	Wafer,	
Length	Scale	1	cm	
network	rou>ng	

Mul>-Scale	Circuit	
Structure	on	an	8	inch	
CMOS	Wafer	(180nm)	



Physical Model, local 
analogue computing, 

binary continuous time 
communication 

 

Wafer-Scale Integration 
of 200.000 neurons and 
50.000.000 synapses on 

a single 20 cm wafer 

 

Short term and long term 
plasticity, 10.000 faster 

than real-time 

Wafer-scale	integraGon	of	analog	neural	networks,	J.	Schemmel,	J,	Fieres	and	K.	Meier	
In	:	Proceedings	of	IJCNN	(2008),	IEEE	Press,		431		



x	20			:			2500	PCBs	



Big	machine	in	commissioning	phase	since	March	30th	2016	
Part	the	Human	Brain	Project	(HBP)	plaqorm	system	

500	n	/	100k	s	

Scaling	up	

200k	n	/	50m	s	 4m	n	/	1b	s	



Configura>on	Space	40	MB	for	a	full	Wafer	



Configura>on	Space	40	MB	for	a	full	Wafer	



Challenge	and	Opportunity	:	Variability		



	
Marder,	Taylor	Nature	Neuroscience	14,	Nr	2,	2011	

Pyloric	rhythm	of	the	crustacean	stomatogastric	ganglion	
	

20.000.000	model	networks	created	with	17	random	cell	parameters,	fixed	connec>vity	
(Neuron)	
400.000	networks	found	with	„iden>cal		(de-generate)“	>ming	behaviour	in	measured	
biological	range	
	

Sensi>vity	of	single	parameters	within	„de-generate“	solu>ons		



	
Marder,	Taylor	Nature	Neuroscience	14,	Nr	2,	2011	

Variability	has	to	
be	at	the	right	
place	...	



Hardware-In-the-Loop 

Millions	of	parameters	
-	network	topology	
-	neuron	sizes	and	parameters	
-	synap>c	strengths	

What	for	?	
	
-  Calibra>on	
-  Learning	
-  Environment	
-  Data	

Separated	?	



Conven>onal	Computer	
calibra>on,	learning,	

virtual	environment,	data	

Read	

Configure,	load	

Neuromorphic	
Machines	



Sebas>an	Schmit,	Paul	Müller	

Calibra>on	
	

Make	BrainScaleS	like	a	digital	
simulator	?	
	

OR	
	

Put	variabiity	at	the	right	place	!	
	

By	hand	?	–	By	self	learning	!	
	



Sebas>an	Schmit	et	al.,	accepted	IJCNN	2017	

APer	hardware	in-the-loop	calibra>on	



Sebas>an	Schmit	et	al.,	accepted	IJCNN	2017,	ISCAS	2017	

Feed-forward,	rate-based.	4-layer	spiking	network	
MNIST	classifica>on	on	a	physical	model	machine	

performance	before	and	aPer	hardware	in-the-loop	learning		



MNIST	classifica>on	on	a	physical	model	machine	
Neuronal	firing	ac>vity	aPer	hardware	in-the-loop	learning		

input	 2	x	hidden	

label	

Sebas>an	Schmit	et	al.,	accepted	JCNN	2017,	ISCAS	2017	



Nature	+	
Real->me	 Simula>on	 Accelerated	

Model	

Causality	Detec>on	 10-4	s	 0.1	s	 10-8	s	

Synap>c	Plas>city	 1	s	 1000	s	 10-4	s	

Learning	 Day	 1000	Days	 10	s	

Development	 Year	 1000	Years	 3000	s	

12	Orders	of	Magnitude	

Evolu>on	 >	Millenia	 >	1000	
Millenia	 >	Months	

>	15	Orders	of	Magnitude	

TimeScales	



BrainScaleS-2	
62	nm	prototype	chip	in	the	lab	

New	key	features	
	
Ø  Improved	parameter	storage	

Ø  Hybrid	plas>city	by	on-chip	
processor	:	on-chip	loops	
§  Input	:	>ming	correla>ons,		rates,	

membrane	poten>als,	external	signals	
§  Change	:	synap>c	weights,	network	

topology,	neuron	parameters	

Ø  Structured	neurons	
•  NMDA	plateau	poten>als	create	non-

linear	dendrites	
•  Calcium	spikes	for	coincidence	

detec>on	between	basal	and	distal	
inputs	

•  Na	spikes	(ac>on	poten>als)	
communicate	with	other	neurons	

	

Ø  Evalua>on	system	by	
mid-2018	

Ø  Full-size	prototypes	and	
wafer	masks	by	mid-2020	



Final Thoughts 
Ø   After 10 years of development the BrainScaleS large scale 

physical hardware system is being commissioned and delivers 
first results   

 
Ø  Fully non-Turing, physical model computing can solve 

established machine learning tasks 
 
Ø  2nd generation physical model systems start to offer very 

advanced accelerated local learning capabilities and 
exploitation of dendritic computation 

Goal : Build a continuously learning cognitive machine  



	
Eric	Müller	
DEMO	:	Neuromorphic	Hardware	In-The-Loop:	
Training	a	Deep	Spiking	Network	on	the	
BrainScaleS	Wafer-Scale	System	
	
Johannes	Schemmel	
Training	and	Plas>city	Concepts	of	the	
BrainScaleS	Neuromorphic	Systems	


