
Event-Driven Random Backpropagation: Enabling
Neuromorphic Deep Learning Machines

Emre Neftci

Department of Cognitive Sciences, UC Irvine,
Department of Computer Science, UC Irvine,

March 7, 2017

Scalable Event-Driven Learning Machines

Cauwenberghs, Proceedings of the National Academy of Sciences, 2013

Karakiewicz, Genov, and Cauwenberghs, IEEE Sensors Journal, 2012

Neftci, Augustine, Paul, and Detorakis, arXiv preprint arXiv:1612.05596, 2016

1000x power improvements compared to future GPU technology
through two factors:

• Architecture and device level optimization in event-based computing
• Algorithmic optimization in neurally inspired learning and inference

Neuromorphic Computing Can Enable Low-power, Massively Parallel Computing

• Only spikes are communicated & routed between neurons (weights,
internal states are local)

• To use this architecture for practical workloads, we need algorithms that
operate on local information

Why Do Embedded Learning?

For many industrial applications involving controlled environments, where
existing data is readily available, off-chip/off-line learning is often sufficient.

So why do embedded learning?

Two main use cases:
• Mobile, low-power platform in uncontrolled environments, where

adaptive behavior is required.
• Working around device mismatch/non-idealities.

Potentially rules out:
• Self-driving cars
• Data mining
• Fraud Detection

Neuromorphic Learning Machines

Neuromorphic Learning Machines: Online learning for data-driven autonomy
and algorithmic efficiency

• Hardware & Architecture: Scalable Neuromorphic Learning Hardware
Design

• Programmability: Neuromorphic supervised, unsupervised and
reinforcement learning framework

Foundations for Neuromorphic Machine Learning Software Framework & Library

neon_mlp_extract.py

setup model layers
layers = [Affine(nout=100, init=init_norm, activation=Rectlin()),

Affine(nout=10, init=init_norm, activation=Logistic(shortcut=True))]

setup cost function as CrossEntropy
cost = GeneralizedCost(costfunc=CrossEntropyBinary())

setup optimizer
optimizer = GradientDescentMomentum(

0.1, momentum_coef=0.9, stochastic_round=args.rounding)

Can we design a digital neuromorphic learning machine
that is flexible and efficient?

Examples of linear I&F neuron models

• Leaky Stochastic I&F Neuron (LIF)

V[t + 1] = −αV[t] +

n∑
j=1

ξjwj(t)sj(t) (1a)

V[t + 1] ≥ T : V[t + 1]← Vreset (1b)

Examples of linear I&F neuron models
Continued

• LIF with first order kinetic synapse

V[t + 1] = −αV[t] + Isyn (2a)

Isyn[t + 1] = −a1Isyn[t] +
n∑

j=1

wj(t)sj(t) (2b)

V[t + 1] ≥ T : V[t + 1]← Vreset (2c)

Examples of linear I&F neuron models
Continued

• LIF with second order kinetic synapse

V[t + 1] = −αV[t] + Isyn + Isyn, (3a)

Isyn[t + 1] = −a1Isyn[t] + c1Is[t] + η[t] + b (3b)

Is[t + 1] = −a2Is[t] +
n∑

j=1

wjsj[t] (3c)

V[t + 1] ≥ T : V[t + 1]← Vreset (3d)

Examples of linear I&F neuron models
Continued

• Dual-Compartment LIF with synapses

V1[t + 1] = −αV1[t] + α21V2[t] (4a)

V2[t + 1] = −αV2[t] + α12V1[t] + Isyn (4b)

Isyn[t + 1] = −a1Isyn[t] +
n∑

j=1

w1
j (t)sj(t) + η[t] + b (4c)

V1[t + 1] ≥ T : V1[t + 1]← Vreset (4d)

Mihalas-Niebur Neuron
Continued

• Mihalas Niebur Neuron (MNN)

V[t + 1] = αV[t] + Ie − G · EL +
n∑

i=1

Ii[t] (5a)

Θ[t + 1] = (1− b)Θ[t] + aV[t]− aEL + b (5b)

I1[t + 1] = −α1I1[t] (5c)

I2[t + 1] = −α2I2[t] (5d)

V[t + 1] ≥ Θ[t + 1] : Reset(V[t + 1], I1, I2,Θ) (5e)

MNN can produce a wide variety of spiking behaviors

Mihalas and Niebur, Neural Computation, 2009

Digital Neural and Synaptic Array Transceiver

• Multicompartment generalized integrate-and-fire neurons
• Multiplierless design
• Weight sharing (convnets) at the level of the core

Equivalent software simulations for analyzing fault tolerance, precision,
performance, and efficiency trade-offs (available publicly soon!)

NSAT Neural Dynamics Flexibility

-70

-50

-30

A
m

p
li
tu

d
e
 (

m
V

)

Tonic spiking Mixed mode

-70

-50

-30

A
m

p
li
tu

d
e
 (

m
V

)

Class I Class II

0 100 200 300 400 500
Time (ticks)

-70

-50

-30

A
m

p
li
tu

d
e
 (

m
V

)

Phasic spiking

0 100 200 300 400 500
Time (ticks)

Tonic bursting

Detorakis, Augustine, Paul, Pedroni, Sheik, Cauwenberghs, and Neftci (in preparation)

Flexible Learning Dynamics

wk[t + 1] = wk[t] + sk[t + 1]ek (Weight update)

ek = xm (K[t − tk] + K[tk − tlast])︸ ︷︷ ︸
STDP

(Eligibilty)

xm =
∑

i

γixi (Modulation)

Detorakis, Augustine, Paul, Pedroni, Sheik, Cauwenberghs, and Neftci (in preparation)

Based on two insights:

Causal and acausal STDP weight updates on pre-synaptic spikes
only, using only forward lookup access of the synaptic connectivity
table

Pedroni et al.,, 2016

“Plasticity involves as a third factor a local dendritic potential,
besides pre- and postsynaptic firing times”

Urbanczik and Senn, Neuron, 2014

Clopath, Büsing, Vasilaki, and Gerstner, Nature Neuroscience, 2010

Flexible Learning Dynamics

wk[t + 1] = wk[t] + sk[t + 1]ek (Weight update)

ek = xm (K[t − tk] + K[tk − tlast])︸ ︷︷ ︸
STDP

(Eligibilty)

xm =
∑

i

γixi (Modulation)

Detorakis, Augustine, Paul, Pedroni, Sheik, Cauwenberghs, and Neftci (in preparation)

Based on two insights:

Causal and acausal STDP weight updates on pre-synaptic spikes
only, using only forward lookup access of the synaptic connectivity
table

Pedroni et al.,, 2016

“Plasticity involves as a third factor a local dendritic potential,
besides pre- and postsynaptic firing times”

Urbanczik and Senn, Neuron, 2014

Clopath, Büsing, Vasilaki, and Gerstner, Nature Neuroscience, 2010

Applications for Three-factor Plasticity Rules
Example learning rules

• Reinforcement Learning

∆wij = ηrSTDPij

Florian, Neural Computation, 2007

• Unsupervised Representation Learning

∆wij = ηg(t)STDPij

Neftci, Das, Pedroni, Kreutz-Delgado, and Cauwenberghs, Frontiers in Neuroscience, 2014

• Unsupervised Sequence Learning

∆wij = η (Θ(V)− α(νi − C)) νj

Sheik et al. 2016

• Supervised Deep Learning

∆wij = η(νtgt − νi)φ
′(V)νj

Neftci, Augustine, Paul, and Detorakis, arXiv preprint arXiv:1612.05596, 2016

Applications for Three-factor Plasticity Rules
Example learning rules

• Reinforcement Learning

∆wij = ηrSTDPij

Florian, Neural Computation, 2007

• Unsupervised Representation Learning

∆wij = ηg(t)STDPij

Neftci, Das, Pedroni, Kreutz-Delgado, and Cauwenberghs, Frontiers in Neuroscience, 2014

• Unsupervised Sequence Learning

∆wij = η (Θ(V)− α(νi − C)) νj

Sheik et al. 2016

• Supervised Deep Learning

∆wij = η(νtgt − νi)φ
′(V)νj

Neftci, Augustine, Paul, and Detorakis, arXiv preprint arXiv:1612.05596, 2016

Gradient Backpropagation (BP) is non-local on Neural Substrates

Potential incompatibilities of BP on a neural (neuromorphic) substrate:
1 Symmetric Weights

2 Computing Multiplications and Derivatives

3 Propagating error signals with high precision

4 Precise alternation between forward and backward passes

5 Synaptic weights can change sign

6 Availability of targets

Feedback Alignment

Replace weight matrices in backprop phase with (fixed) random weights
Lillicrap, Cownden, Tweed, and Akerman, arXiv preprint arXiv:1411.0247, 2014

Baldi, Sadowski, and Lu, arXiv preprint arXiv:1612.02734, 2016

Event-Driven Random Backpropagation (eRBP) for Deep Supervised Learning

• Event-driven Random Backpropagation Learning Rule:
Error-modulated, membrane voltage-gated, event-driven,
supervised.

∆wik ∝ φ′(Isyn,i[t])︸ ︷︷ ︸
Derivative

Sk[t]
∑

j

Gij (Lj[t]− Pj[t])︸ ︷︷ ︸
Error

(eRBP)

Event-Driven Random Backpropagation (eRBP) for Deep Supervised Learning

• Event-driven Random Backpropagation Learning Rule:
Error-modulated, membrane voltage-gated, event-driven,
supervised.

∆wik ∝ φ′(Isyn,i[t])︸ ︷︷ ︸
Derivative

Sk[t]
∑

j

Gij (Lj[t]− Pj[t])︸ ︷︷ ︸
Error︸ ︷︷ ︸

Ti

(eRBP)

Approximate derivative with a boxcar function:

Neftci, Augustine, Paul, and Detorakis, arXiv preprint arXiv:1612.05596, 2016

One addition and two comparison per synaptic event

eRBP PI MNIST Benchmarks

Network Classification Error
Dataset eRBP peRBP RBP (GPU) BP (GPU)
PI MNIST 784-100-10 3.94% 3.02% 2.74% 2.19%
PI MNIST 784-200-10 3.53% 2.69% 2.15% 1.81%
PI MNIST 784-500-10 2.76% 2.40% 2.08% 1.8%
PI MNIST 784-200-200-10 3.48% 2.29% 2.42% 1.91%
PI MNIST 784-500-500-10 2.02% 2.20% 1.90%

peRBP = eRBP with stochastic synapses

peRBP MNIST Benchmarks (Convolutional Neural Net)

Network Classification Error
Dataset peRBP RBP (GPU) BP (GPU)
MNIST 3.8 (5 epochs)% 1.95% 1.23%

Energetic Efficiency

Energy Efficieny During Inference:
• Inference: ∼= 100k Synops until first spike: <5% error, 100, 000 SynOps

per classification

eRBP DropConnect (GPU) Spinnaker True North
Implementation (20 pJ/Synop) CPU/GPU ASIC ASIC
Accuracy 95% 99.79% 95% 95%
Energy/classify 2 µJ 1265 µJ 6000 µJ 4µJ
Technology 28 nm Unknown 28 nm

Energetic Efficiency

Energy Efficieny During Training:
• Training: SynOp-MAC parity

Embedded local plasticity dynamics for continuous (life-long) learning

Learning using Fixed Point Variables

• 16 bits neural states
• 8 bits synaptic weights
• ∼= 1Mbit Synaptic Weight Memory

All-digital implementation for exploring scalable event-based learning

UCI (Neftci, Krichmar, Dutt), UCSD (Cauwenberghs)

Summary & Acknowledgements

Summary:
1 NSAT: Flexible and efficient neural learning machines

2 Supervised deep learning with event-driven random back-propagation
can achieve good learning results at >100x energy improvements

Challenges:
1 Catastrophic Forgetting: Need for Hippocampus, Intrinsic Replay and

Neurogenesis

2 Build a neuromorphic library of “deep learning tricks” (Batch
normalization, Adam, . . .)

Acknowledgements

Collaborators:

Georgios Detorakis

(UCI)

Somnath Paul (Intel) Charles Augustine

(Intel)

Support:

P. Baldi, P. Sadowski, and Zhiqin Lu. “Learning in the Machine:
Random Backpropagation and the Learning Channel”. In: arXiv
preprint arXiv:1612.02734 (2016).

Gert Cauwenberghs. “Reverse engineering the cognitive brain”. In:
Proceedings of the National Academy of Sciences 110.39 (2013),
pp. 15512–15513.

C. Clopath, L. Büsing, E. Vasilaki, and W. Gerstner. “Connectivity
reflects coding: a model of voltage-based STDP with homeostasis”. In:
Nature Neuroscience 13.3 (2010), pp. 344–352.

R.V. Florian. “Reinforcement learning through modulation of
spike-timing-dependent synaptic plasticity”. In: Neural Computation
19.6 (2007), pp. 1468–1502.

R. Karakiewicz, R. Genov, and G. Cauwenberghs. “1.1 TMACS/mW
Fine-Grained Stochastic Resonant Charge-Recycling Array
Processor”. In: IEEE Sensors Journal 12.4 (Apr. 2012), pp. 785–792.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and
Colin J Akerman. “Random feedback weights support learning in deep
neural networks”. In: arXiv preprint arXiv:1411.0247 (2014).

S. Mihalas and E. Niebur. “A generalized linear integrate-and-fire
neural model produces diverse spiking behavior”. In: Neural
Computation 21 (2009), pp. 704–718.

E. Neftci, S. Das, B. Pedroni, K. Kreutz-Delgado, and
G. Cauwenberghs. “Event-Driven Contrastive Divergence for Spiking
Neuromorphic Systems”. In: Frontiers in Neuroscience 7.272 (Jan.
2014). ISSN: 1662-453X. DOI: 10.3389/fnins.2013.00272. URL:
http://www.frontiersin.org/neuromorphic_engineering/
10.3389/fnins.2013.00272/abstract.

Emre Neftci, Charles Augustine, Somnath Paul, and
Georgios Detorakis. “Event-driven Random Back-Propagation:
Enabling Neuromorphic Deep Learning Machines”. In: arXiv preprint
arXiv:1612.05596 (2016).

Bruno U Pedroni, Sadique Sheik, Siddharth Joshi, Georgios Detorakis,
Somnath Paul, Charles Augustine, Emre Neftci, and
Gert Cauwenberghs. “Forward Table-Based Presynaptic
Event-Triggered Spike-Timing-Dependent Plasticity”. In: Oct. 2016.
URL: %7BIEEE%20Biomedical%20Circuits%20and%20Systems%
20Conference%20(BioCAS),%20https:
//arxiv.org/abs/1607.03070%7D.

http://dx.doi.org/10.3389/fnins.2013.00272
http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2013.00272/abstract
http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2013.00272/abstract
%7BIEEE%20Biomedical%20Circuits%20and%20Systems%20Conference%20(BioCAS),%20https://arxiv.org/abs/1607.03070%7D
%7BIEEE%20Biomedical%20Circuits%20and%20Systems%20Conference%20(BioCAS),%20https://arxiv.org/abs/1607.03070%7D
%7BIEEE%20Biomedical%20Circuits%20and%20Systems%20Conference%20(BioCAS),%20https://arxiv.org/abs/1607.03070%7D

Robert Urbanczik and Walter Senn. “Learning by the dendritic
prediction of somatic spiking”. In: Neuron 81.3 (2014), pp. 521–528.

	Can we design a digital neuromorphic learning machine that is flexible and efficient?

