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Objective function is of the form:

courtesy of Xinhua Zhang

an example of SC reconstruction
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D-Wave Hamiltonian:

where                     

mapping the sparse-coding problem onto a 
quantum unconstrained binary optimization (QUBO):
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mapping the sparse-coding problem onto a 
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This mapping is achieved by the relations:

  analogous to L0-sparseness penalty [Nguyen and Kenyon, PMES-16 (2016)]

8 Nb qubits built from 16 couplers



A. METHODOLOGY

4 “row”qubits



A. METHODOLOGY

4 “column”qubits



unit cell

A. METHODOLOGY



intra-cell couplings

A. METHODOLOGY



intra-cell couplings

A. METHODOLOGY



A. METHODOLOGY

neighboring couplings



A. METHODOLOGY

neighboring couplings



full Chimera: 12 x 12 x 8
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8 hand-designed features

C. IMPLEMENTATION ON D-WAVE MACHINE

complete set: 

Desire: Randomly generated       :      

orthogonality!!
number of features

“row” “column”

8 < Nf < 1152
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stride:  4

• 12x12 patch images
RESULTS

classes air auto bird cat deer dog frog horse ship truck

accur. 
(binary)

89.21% 93.38% 90.87% 89.42% 94.71% 88.94% 87.98% 89.9% 89.9% 85.58%

Classification task: SVM (liblinear) 
1042 training/208 test images

Nguyen and Kenyon, PMES-16 (2016)



D. COMPARISON WITH A CLASSICAL SOLVER

So far, quantum computation (D-Wave 
2X) has NOT outperformed its 
classical counterpart (GUROBI).  Both 
are comparable.  

!
We already made the problem hard. 
We need to make it harder.  

!
How can we make the SC problem 
harder for both? 



From SC perspective: more overcomplete, 
harder to solve… 
Meanwhile: The full Chimera in D-Wave 
offers a certain set of (nearest-neighbor) 
connectivity…
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From SC perspective: more overcomplete, 
harder to solve… 
Meanwhile: The full Chimera in D-Wave 
offers a certain set of (nearest-neighbor) 
connectivity…

EMBEDDING technique

• Employ all bipartite couplings!
• Small number of nodes (qubits)

5x5

In practice (D-Wave 2X): 
Fully connected: 49 nodes 
Partially orthogonal: 74 nodes 
Feature optimization!

D. COMPARISON WITH A CLASSICAL SOLVER



5x5

Feature Learning (in progress)

before… …after

D. COMPARISON WITH A CLASSICAL SOLVER

5x5



STARTING TO SEE SOMETHING GOOD…

solver

problem

49 nodes: !
fully connected 

72 nodes: !
partially !

Chimera-orthogonal 

Energy Time

~ 480 
seconds

Energy Time

few seconds

Energy Time

-48.476 30 min

Energy Time

-51.294 few seconds

No. of (random) Hamiltonians: 1
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-29.99 -29.99
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COMPRESSIVE SENSING ON A QUANTUM MACHINE 
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y: measurement, sparse!
x: compressible signal!
  : sensing matrix 
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COMPRESSIVE SENSING ON A QUANTUM MACHINE 
WHY NOT?

wide applications particularly in image processing (X-ray, CT, …), sampling, 
etc (c.f. Candes, Baraniuk, Compressive Sensing) 

y: measurement, sparse!
x: compressible signal!
  : sensing matrix 

COMPRESSIVE SENSING in a nutshell

y = x L0: NP-hard 
L1: mostly- 
              used



COMPRESSIVE SENSING ON A QUANTUM MACHINE

X-rays

object
scintillator

Charge coupled device camera

Obtaining radial density profile f(r)

of a cylindrically symmetric object

Abel transform algorithm

cross-section

Radiograph Experiment
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Task: Recovering the density profile of the cylindrical 
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projected radial density of a cylindrically symmetric object: 
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Abel transform algorithm



COMPRESSIVE SENSING ON A QUANTUM MACHINE

How?:  
one method: !
to obtain a slice of the 
original object            Abel inversion 

h(y) = A * f(r)

x

y

r

projected radial density of a cylindrically symmetric object: 

h(y) projected, measurable 

Task: Recovering the density profile of the cylindrical 
object f(r):  

R

Abel transform algorithm



COMPRESSIVE SENSING ON A QUANTUM MACHINE

Our method is applicable to e.g. X-ray images as sparse inputs

Abel transform algorithm D-Wave QUBO+

h = A f

We obtain:
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We obtain:
are sparse Fourier coefficients.

Abel transform algorithm + D-Wave QUBO



COMPRESSIVE SENSING ON A QUANTUM MACHINE

Next: to choose (learn) 
domain basis: 

Our method is applicable to e.g. X-ray images as sparse inputs

h = A f

We obtain:
are sparse Fourier coefficients.

h = A

then:

F s Ising !
input

Abel transform algorithm + D-Wave QUBO



COMPRESSIVE SENSING ON A QUANTUM MACHINE 

D-Wave Ising pulls out ALL non-zero Fourier coefficients (frequencies) 

Results



COMPRESSIVE SENSING ON A QUANTUM MACHINE 

D-Wave Ising pulls out ALL non-zero Fourier coefficients (frequencies) 

solver

problem

GUROBI D-Wave 2X

Compressive !
sensing on!
radiograph!

images

energy energytime time

~ -6.84
cutoff 
9 hrs -67.673 few  

sec

Results



E. SUMMARY

first demonstration of sparse coding using 
quantum computer!
benchmark results on standard image 
classification task!
mapping of visual features to D-Wave Chimera!
compare D-Wave performance with GUROBI !
compressive sensing on Ising for density profile 
detection where D-Wave significantly outperforms 
GUROBI!



  E. FUTURE WORK 
•  optimize features 
•     add colors 
•     TrueNorth comparison  
•     hierarchy model 
•     compressive sensing on real images 


