Inferring Inference

Xaq Pitkow Rajkumar Vasudeva Raju

part of the MICrONS project with Tolias, Bethge, Patel, Zemel, Urtasun, Xu, Siapas, Paninski, Baraniuk, Reid, Seung

NICE workshop 2017

Hypothesis:
The brain
approximates probabilistic inference
over a probabilistic graphical model
using a message-passing algorithm
implicit in population dynamics

What algorithms can we learn from the brain?

Architectures?

cortex, hippocampus, cerebellum, basal ganglia, ...

Transformations?

nonlinear dynamics from population responses

Learning rules?

short and long-term plasticity

Principles:

Probabilistic

Nonlinear

Distributed

Details:

Graphical models

Message-passing inference
Multiplexed across neurons

Events in the world can cause many neural responses. Neural responses can be caused by many events.

So neural computation is inevitably statistical. This provides us with mathematical predictions.

Why does it matter whether processing is linear or nonlinear?
If all computation were linear we wouldn't need a brain.

linearly separable

nonlinearly separable

-

Two sources of nonlinearities

Relationships between latent variables

$$
\text { Image }=\text { Light } \times \text { Reflectance }
$$

Relationships between uncertainties
posteriors generally have nonlinear dependencies even for the simplest variables

Product rule: $\quad \mathrm{p}(\mathrm{x}, \mathrm{y})=\mathrm{p}(\mathrm{x}) \cdot \mathrm{p}(\mathrm{y})$
Sum rule: $L(x)=\log \Sigma_{y} \exp L(x, y)$

Probabilistic Graphical Models:

Simplify joint distribution $p(\boldsymbol{x} \mid \boldsymbol{r})$ by specifying how variables interact

$$
p(\boldsymbol{x} \mid \boldsymbol{r}) \propto \prod_{\alpha} \psi_{\alpha}\left(\boldsymbol{x}_{\alpha}\right)
$$

Example: Pairwise Markov Random Field

$$
p(\boldsymbol{x})=\frac{1}{Z} \prod_{\boldsymbol{s} \in V} e^{J_{s}\left(\boldsymbol{x}_{s}\right)} \prod_{(\boldsymbol{s}, \boldsymbol{t}) \in E} e^{J_{s t}\left(x_{s t}\right)}
$$

Approximate inference by message-passing:

- Localize information so it is actionable
- Summarize statistics relevant for targets
- Send that information along graph
- Iteratively update factors with new information

$$
\begin{array}{cl}
\begin{array}{c}
\text { general } \\
\text { equation }
\end{array} & \\
\boldsymbol{\theta}_{i, t+1}=\boldsymbol{f}\left(\boldsymbol{\theta}_{i t},\right. & \text { interactions } \\
\begin{array}{c}
\text { posterior } \\
\text { parameters }
\end{array} & \begin{array}{l}
\left.\left.\boldsymbol{\theta}_{j t}\right\}_{j \in N_{i}} \mid G, J\right) \\
\text { posterior for } \\
\text { neighbors }
\end{array}
\end{array}
$$

Example message-passing algorithms

- Mean-field (assumes variables are independent)
- Belief propagation (assumes tree graph)
- Expectation propagation (updates parametric posterior)
- Brain's clever tricks?

Spatial representation of uncertainty

 (e.g. Probabilistic Population Codes, PPCs)

Pattern of activity represents probability.
More spikes generally means more certainty

Message-passing updates

$$
\boldsymbol{\theta}_{i, t+1}=\boldsymbol{f}\left(\boldsymbol{\theta}_{i t},\left\{\boldsymbol{\theta}_{j t}\right\}_{j \in N_{i}} \mid G, J\right)
$$

$$
\boldsymbol{r}=U \Theta+\boldsymbol{\eta}
$$

embedding
$\dot{\boldsymbol{r}}=\boldsymbol{F}\left(\boldsymbol{r}_{t}\right)$
Neural dynamics

Neural
activity

Neural
activity

Neural activity

Neural encoding

Information encoded

Neural activity

Neural encoding

Information encoded

Neural interactions

Information interactions

Neural interactions

Probability distributions

Network activity can implicitly perform inference

Raju and Pitkow 2016

Simulated brain

$$
\begin{aligned}
& \dot{b}_{i t}=-b_{i t}+\sigma\left(\sum_{j} W\left[J_{i j}, b_{i t}, b_{j t}\right] b_{j t}+h_{i t}\right) \\
& W\left[J_{i j}, b_{i}, b_{j}\right]=2 J_{i j}+4 J_{i j}^{2}\left(1-2 b_{i}\right)\left(1-b_{j}\right)
\end{aligned}
$$

$$
\boldsymbol{r}_{t+1}=\sigma\left(A \boldsymbol{r}_{t}+B \boldsymbol{h}_{t}-\theta\right)
$$

Inferring inference

$$
\hat{\boldsymbol{b}}=V \boldsymbol{r}+c
$$

$$
\hat{W}\left[J_{i j}, b_{i}, b_{j}\right]=\sum_{\alpha \beta \gamma} \underline{G_{\alpha \beta \gamma}} J_{i j}^{\alpha} b_{i}^{\beta} b_{j}^{\gamma}
$$

Message-passing Interactions parameters

Recovery results for simulated brain

Analysis reveals degenerate family of equivalent algorithms

Distance towards local minimum 1

From simulated neural data we have recovered:

how variables are encoded
which variables interact
how they interact
how the interactions are used

Representation

Graphical model

Message-Passing algorithm

Applying message-passing to novel tasks

Brain
Message passing nonlinearity

Apply to new graphical $O R$ novel neural model structure

Relax to network

Next up: applying methods to real brains

stimulus: orientation field
recordings: V1 responses*

mementos:

- Neurons can perform inference implicitly in a graphical model distributed across a population.
- New method to discover message-passing algorithms by modeling transformations of decoded task variables

Brain

acknowledgements

funding:

National Institutes
of Health

collaborators

Alex Pouget

 Jeff BeckDora Angelaki
Andreas Tolias
Jacob Reimer
Fabian Sinz
Alex Ecker
Ankit Patel

$x^{x a q l a b}{ }_{\text {com }}$

Rajkumar Vasudeva Raju

```
Kaushik Lakshminarasimhan
Qianli Yang
Emin Orhan
Aram Giahi-Saravani
KiJung Yoon
James Bridgewater
Zhengwei Wu
Saurabh Daptardar
```

