

Inferring Inference

Xaq Pitkow Rajkumar Vasudeva Raju

part of the MICrONS project with Tolias, Bethge, Patel, Zemel, Urtasun, Xu, Siapas, Paninski, Baraniuk, Reid, Seung

NICE workshop 2017

Hypothesis:

The brain

approximates probabilistic inference

over a probabilistic graphical model

using a message-passing algorithm

implicit in population dynamics

What algorithms can we learn from the brain?

Architectures?

cortex, hippocampus, cerebellum, basal ganglia, ...

Transformations?

nonlinear dynamics from population responses

Learning rules?

short and long-term plasticity

Principles: Details:

Probabilistic Graphical models

Nonlinear Message-passing inference

Distributed Multiplexed across neurons

Events in the world can cause many neural responses. Neural responses can be caused by many events.

So neural computation is inevitably statistical. This provides us with mathematical predictions.

Why does it matter whether processing is linear or nonlinear?

If all computation were linear we wouldn't need a brain.

Two sources of nonlinearities

Relationships between latent variables

Image = Light × Reflectance

Relationships between uncertainties

posteriors generally have nonlinear dependencies even for the simplest variables

Product rule: $p(x,y) = p(x) \cdot p(y)$

Sum rule: $L(x) = \log \sum_{y} \exp L(x,y)$

Probabilistic Graphical Models:

Simplify joint distribution $p(\boldsymbol{x}|\boldsymbol{r})$ by specifying how variables interact

$$p(\boldsymbol{x}|\boldsymbol{r}) \propto \prod_{\alpha} \psi_{\alpha}(\boldsymbol{x}_{\alpha})$$

Example: Pairwise Markov Random Field

$$p(\boldsymbol{x}) = \frac{1}{Z} \prod_{\boldsymbol{s} \in V} e^{\boldsymbol{J_s(\boldsymbol{x_s})}} \prod_{(\boldsymbol{s},\boldsymbol{t}) \in E} e^{\boldsymbol{J_{st}(\boldsymbol{x_{st}})}}$$

Approximate inference by message-passing:

- Localize information so it is actionable
- Summarize statistics relevant for targets
- Send that information along graph
- Iteratively update factors with new information

general equation interactions
$$\theta_{i,t+1} = f(\theta_{it}, \{\theta_{jt}\}_{j \in N_i} | G, J)$$

posterior parameters posterior for neighbors

message-passing parameters

Example message-passing algorithms

- Mean-field (assumes variables are independent)
- Belief propagation (assumes tree graph)
- Expectation propagation (updates parametric posterior)

•

Brain's clever tricks?

Spatial representation of uncertainty

(e.g. Probabilistic Population Codes, PPCs)

Pattern of activity represents probability.

More spikes generally means more certainty

Message-passing updates

$$\boldsymbol{\theta}_{i,t+1} = \boldsymbol{f}(\boldsymbol{\theta}_{it}, \{\boldsymbol{\theta}_{jt}\}_{j \in N_i} | G, \boldsymbol{J})$$

$$r=U\mathbf{\Theta}+\mathbf{\eta}$$
 embedding

$$\dot{m{r}} = m{F}(m{r}_t)$$

Neural dynamics

Neural encoding

Information encoded

Neural encoding

Information encoded

Neural encoding

Information interactions

Neural interactions

Neural interactions

Neural encoding

Information interactions

Probability distributions

Network activity can implicitly perform inference

Raju and Pitkow 2016

Simulated brain

$$\dot{b}_{it} = -b_{it} + \sigma \left(\sum_{j} W \left[J_{ij}, b_{it}, b_{jt} \right] b_{jt} + h_{it} \right)$$

$$W \left[J_{ij}, b_{i}, b_{j} \right] = 2J_{ij} + 4J_{ij}^{2} (1 - 2b_{i})(1 - b_{j})$$

$$\mathbf{r}_{t+1} = \sigma \left(A \mathbf{r}_t + B \mathbf{h}_t - \theta \right)$$

Encode

Inferring inference

$$\hat{\boldsymbol{b}} = V\boldsymbol{r} + c$$

$$\hat{W}[J_{ij}, b_i, b_j] = \sum_{\alpha\beta\gamma} G_{\alpha\beta\gamma} J_{ij}^{\alpha} b_i^{\beta} b_j^{\gamma}$$

Message-passing Interactions parameters

Decode

Fit*

*within family

Recovery results for simulated brain

Analysis reveals degenerate family of *equivalent* algorithms

From *simulated* neural data we have recovered:

how variables are encoded

Representation

which variables interact

how they interact

Graphical model

how the interactions are used

Message-Passing algorithm

Applying message-passing to novel tasks

Brain neural network

Message passing nonlinearity

Apply to new graphical OR novel neural model structure

Relax to network

Next up: applying methods to real brains

stimulus: orientation field

mementos:

- Neurons can perform inference implicitly in a graphical model distributed across a population.
- New method to discover message-passing algorithms by modeling transformations of decoded task variables

acknowledgements

funding:

collaborators

Alex Pouget
Jeff Beck
Dora Angelaki
Andreas Tolias
Jacob Reimer
Fabian Sinz
Alex Ecker
Ankit Patel

xaqlab.com

Rajkumar Vasudeva Raju

Kaushik Lakshminarasimhan Qianli Yang Emin Orhan Aram Giahi-Saravani KiJung Yoon James Bridgewater Zhengwei Wu Saurabh Daptardar