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Device SPICE Model

C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino, "Memristor SPICE Model and Crossbar 
Simulation Based on Devices with Nanosecond Switching Time," IEEE International Joint
Conference on Neural Networks (IJCNN), August 2013. [BEST PAPER AWARD]
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Memristor Backpropagation Circuit
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 Online training via backpropagation circuits

 The same memristor crossbar implements both forward and backward passes
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Socrates: Online Training Architecture
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 Multicore processing system

 Implements backpropagation based online training

 Two versions: 1) memristor core and 2) fully digital core

 Has three 3D stack memory for storing training data
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FPGA Implementation

NC = Neural Core
R = Router

Router
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Actual images to and 
out of FPGA based 
multicore neural 
processor: 

 We verified the system functionality by 
implementing the digital system on an FPGA. 
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Training Efficiency

Accuracy(%) GPU Digital Memristor

MNIST 99% 97% 97%

COIL-20 100% 98% 97%

COIL-100 99% 99% 99%

Training compared to GTX980Ti GPU

Energy Efficiency:
- Digital: 5900x
- Memristor: 70000x

Speedup:
- Digital: 14x
- Memristor: 7x
- Batch processing on GPU but not 
on specialized processors
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Inference Efficiency

Inference compared to GTX980Ti GPU

Energy Efficiency:
- Digital: 7000x 
- Memristor: 358000x

Speedup:
- Digital: 29x
- Memristor: 60x

Memristor learning core is about 35x smaller 
in area:

- Digital: 0.52 mm2

- Memristor: 0.014 mm2
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Large Crossbar Simulation
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 Studying training using memristor 
crossbars needs to be done in SPICE 
to account for circuit parasitics.

 Simulating one cycle of a large crossbar 
in can take over 24 hours in SPICE. 
(training requires thousands of 
iterations and hence is nearly 
impossible in SPICE). 

 Developed a fast (~30ms) algorithm to 
approximate SPICE output with over 
99% accuracy.

 Enables us to examine learning on 
memristor crossbars.
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Memristor for On-Line Learning

 On-line learning requires “highly tunable” or “slow” memristors
 This does not affect inference speed
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LiNbO3 Memristor for Online Learning

 Device is quite slow: order of tens of 
millisecond switching time.

 Useful for backprogation training.
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Unsupervised Clustering
Before Training After Training
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 We extended the 
backpropagation circuit to 
implement auto-encoder 
based unsupervised learning 
in memristor crossbars.

 These graphs show the 
circuit learning and clustering 
data in an unsupervised 
manner.
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Application: Cybersecurity
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 The autoencoder based unsupervised training circuits were used to learn normal 
network packets. 

 When the memristor circuits were presented with anomalous network packets, 
these were detected with a 96.6% accuracy and a 4% false positive rate.

 Could also implement rule based 
malicious packet detection (similar 
to SNORT) in a very compact 
circuit

Regex : user\s[^\n]{10}
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Application: Autonomous Agent for UAVs

IBM 
TrueNorth

 Exploring implementation on:
 IBM TrueNorth processor
 Memristor circuits
 High performance clusters: CPUs and 

GPUs

 Cognitively Enhanced Complex Event 
Processing (CECEP) Architecture

 Geared towards autonomous 
decision making in a variety of 
applications including autonomous 
UAVs
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