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Adaptive Learning

 One of the differentiating 
capabilities of the brain is 
continuous learning

 So the question becomes 
where are we with respect 
to machine learning?
 Most data-driven algorithms 

in ML do not continuously 
adapt
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 The learning phase of an algorithm addresses the mechanism 
by which adjustments are made in the learning process (such as 
weight tuning in a neural network)



ML Learning Paradigms
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…but they have limitations



Static Learning Bottleneck
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Continuous Neural Adaptation
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 Synaptic plasticity 
 Dynamic alteration of the strength of the connections between neurons

 Structural plasticity 
 Addition and eliminations of neural network infrastructure



Game Theory

 Game theory is a branch of applied mathematics to 
formally analyze the strategic interaction between 
competing players

 Algorithmic Game Theory: the intersection of game 
theory & computer science 
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• Analysis - analyzes algorithms from game-theoretic perspective, focus on properties 
such as equilibria

• Design - focuses upon development of algorithms with desirable theoretical 
properties

Why game theory?

 Desirable properties for ML: 
 Leads to distributed computing, low overhead, simplicity, & provides a strategic 

perspective 



Moving Target Defense (MTD)

 Use randomization, diversity, or change to make a computer 
system more difficult to attack (make it a “moving target”).
 Randomized secret such as address-space layout randomization

 Reset environment: new passwords, micro reboot, etc.

 Deploy decoys.  Change the real vs. decoys.

KEY:

 There is some information that helps the attacker as (s)he 
acquires it (e.g. in attempting to attack a system)

 The defender can take this information away, at least 
temporarily
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PLADD

 Probabilistic Learning Attacker Dynamic Defender (PLADD)
 Extension of FlipIt attacker and defender model 

 Two players & one contested resource

 A player can move at a cost

 Strategy: when to move? 
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 The “take” move - seizes 
control of the resource 
immediately 

 The “morph” move -
resets the game

 Neither player ever 
knows who owns the 
resource



PLADD for Learning = FLANEL
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 Fundamental Learning Algorithm aNalysis and Exploration of 
Limits (FLANEL) 
 Modest extension that adds considerable complexity



FLANEL
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 Morph = Rebuild the system (e.g. classifier)

 Take = Short-term improvement

PLADD with

Varying probability

distributions



Exploring Alternatives to 
Simulation –vs– Analytical
 Analysis continuum

 Challenges:
 Analytical: optimal response over continuous (infinite) parameters

 May require restrictive / unrealistic assumptions (e.g., periodic moves)

 Simulation: enumerate (subset of) parameters and collect statistics
 Search by full enumeration frequently computationally intractable

 Opportunity:
 Leverage numerical optimization to gain prescriptive insights while 

preserving much of the flexibility of simulation

Increasing Flexibility, Expressiveness Increasing Generality

Simulation Stochastic Programming Analytical
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 Key idea in stochastic programming: 
 approximate uncertainty by sampling outcomes

 Approximate attacker’s strategy space by sampling possible 
random success-time outcomes 
 Attack scenarios

 More scenarios gives a better approximation

 Optimize to determine the defender’s single best strategy 
against ALL scenarios
 Non-anticipative (only one solution for all attacks)

 Extensive form is a mixed-integer program (MIP)

 Can express more easily as a disjunctive program (DP)
 Convert DP to MIP
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Method 1: Stochastic Programming



Stochastic Programming Example

Idea:

 Study the time between two major model rebuilds (morphs)

 Fix the number of takes

 Draw many concrete instantiations
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Distribution:

Time to lose trust

after full build

Distribution:

Time to lose trust

after small fix



Stochastic Program Example

 Given many concrete scenarios (Explicit time to model failure)

14

• Given only k (3 in this case) small fixes, when to do them?



Stochastic Program Example

 When to do the 3 small fixes?
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• Cost from the PLADD model: average time when you cannot trust 

the model.

Never 

considered



FLANEL Cost

 When to do the 3 small fixes?
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• Cost from the FLANEL model: average time when you cannot trust 

the model.

= model untrusted



Method 2: Study Simpler Settings 

 Streaming setting

 Keep up with the stream

 When the data structures in the box are badly tuned, too slow

 Avoid dropping data elements
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Objects/data

arrive

Classify, 

look up, etc.

Output

Answer



Conclusion

 Static Learning Bottleneck – need for adaptive learning 

 Working on a theoretical understanding of the problem 
 Need a holistic view not just Band-Aid solutions for individual 

problems

 Mathematics of game theory are advantageous 

 Presented FLANEL as an adaptive learning analysis framework
 Intended to provide a foundation for quantitatively evaluating 

adaptation in learning systems

 Potential to impact how ML algorithms are implemented and 
deployed
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Thank you
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Interference

 Google’s DeepMind announced in 
February 2015 that they’d built a 
system that could beat 49 Atari games
 However, each time it beat a game the 

system needed to be retrained to beat the 
next one

 "To get to artificial general intelligence 
we need something that can learn 
multiple tasks," says DeepMind 
researcher Hadsell. "But we can’t even 
learn multiple games."
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Dynamic Environments

 Concept Drift: changes in 
the data over time
 Virtual: changes in the 

underlying data distribution

 Real: concepts themselves are 
changing 

 Transfer Learning: the ability 
to utilize knowledge learned 
for one domain in learning a 
related but new domain
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Key Limitation 
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“The development of game theory in the early 1940s by John

von Neumann was a reaction against the then dominant view

that problems in economic theory can be formulated using

standard methods from optimization theory. Indeed, most real

world economic problems typically involve conflicting

interactions among decision-making agents that cannot be

adequately captured by a single (global) objective function,

thereby requiring a different, more sophisticated treatment.”

M. Pelillo and A. Torsello

 An analogous statement can be said about machine learning 
 Many learning problems involve dynamics that cannot be adequately 

capture by a single global objective function



FlipIt Example

 Two players: attacker and defender

 One contested resource.  Defender holds at start

 A player can move at a cost
 Takes resource (tie to defender)

 Neither player ever knows who owns the resource

 Strategy: when to move?  Timeline is infinite.

 Utility = (time in control) – cost    (can be weighted)
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New Game: PLADD

 Probabilistic Learning Attacker Dynamic Defender

 Morphs reset to the start. Between morphs is a finite game

 With no morphs, the game is infinite, like FlipIt

 Difference between finite and infinite games is benefit of 
MTD
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Formulating and Solving Stochastic 
Programs
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Progressive HedgingExtensive Form
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Extensive Formulation: MIP

 One schedule/strategy to minimize average cost
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Decision

Variables

Compute costs

for Scenario 1

Compute costs

for Scenario 2

Compute costs

for Scenario 3

Compute costs

for Scenario 4



Progressive Hedging
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Optimal individual

decisions

Lagrangian penalty

terms


