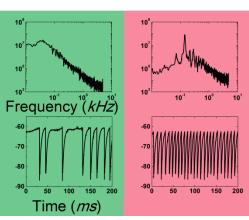
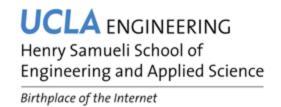
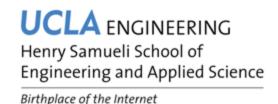

Neuronal dynamics emulation on Spikey


Wenyuan Li, Igor V. Ovchinnikov, Honglin Chen, Zhe Wang and Kang L. Wang


NICE workshop 2017

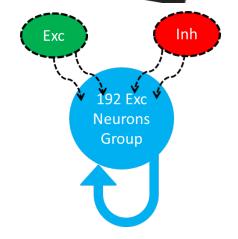


Motivation

*	Neuronal firing activities have attracted a lot of attention.					
	☐ The basis for adaptive behavior;					
	☐ The signs for various neurological disorders.					
*	The "criticality" hypothesis.					
	☐ The brain is poised in the critical boundary;					
	☐ Have been found across multiple species using a variety of measurement technique;					
	☐ Still exists a hot debate;					
	☐ Possible solution: constructing a brain-phase diagram;					
	☐ The emerging neuromorphic chip provide a powerful tool.					
**	Toward better understanding of collective neuronal dynamics. ☐ provide a new computing paradigm using networks of spiking neurons					

Emulation Settings

NICE 2017


The emulation work was done using the neuromorphic chip - Spikey I, developed by University of Heidelberg, Germany.

We constructed a recurrent network of neurons with sparse and random

connections.

- ❖ A group of **192 neurons** was used.
- \star Each neuron was configured to have a fixed number k=5 of presynaptic partners.
- ❖ Eight (8) randomly chosen neurons from the whole group were stimulated by an external input modeled as a uniform-time-distributed signal.
- **❖ The average effect** of these external inputs for triggering neuronal firing was **0**.
- ❖ The neuron's resting membrane potential was chosen to be -65mV.

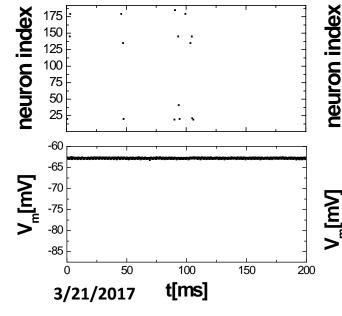
Device Research Laborators

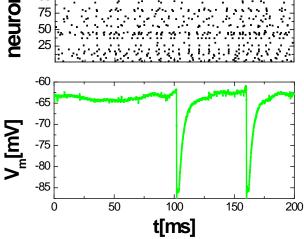
Three Phases

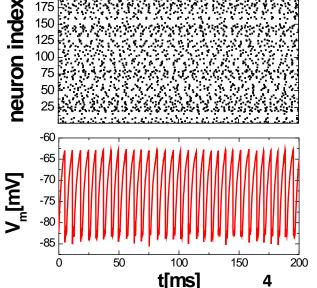
NICE 2017

Birthplace of the Internet

T-phase

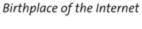

- oFew firing activities during the emulation;
- or the whole of the second of

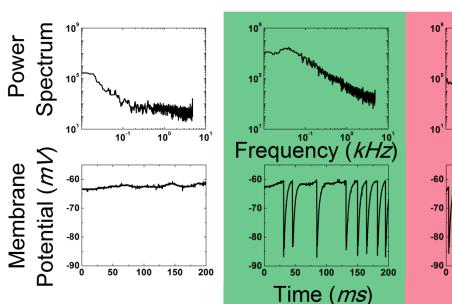

N-phase


- " •Intermittent firing | activities;
- " •Closely resemble to the the normal healthy brain behavior.

C-phase

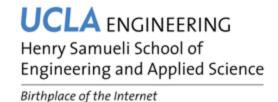
- ∥ A constant ∥ oscillatory firing ∥ ∥ behavior;
- The firing activities never stops.





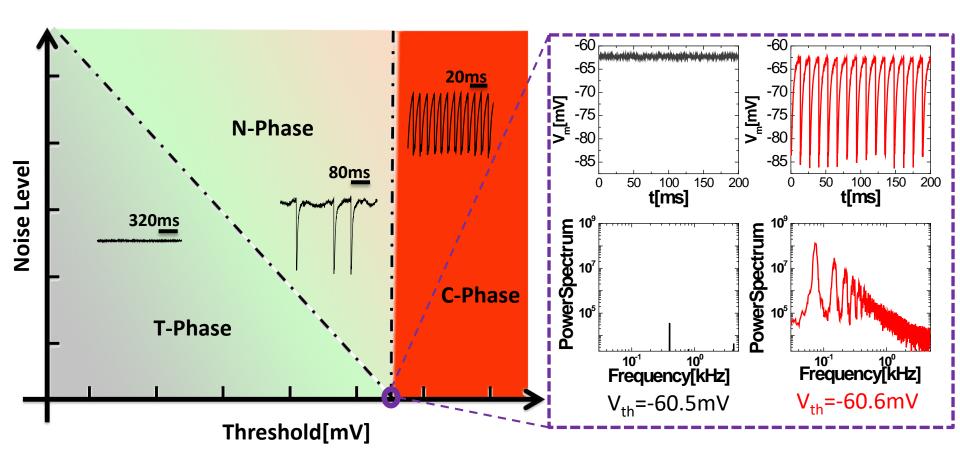
Power Spectra

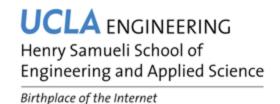
NICE 2017



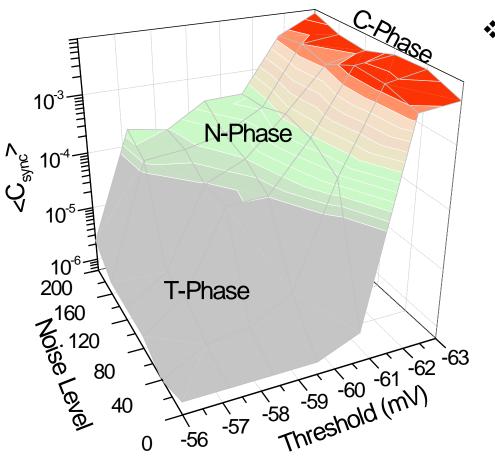
T-phase: a sharp decrease at low frequency on power spectra (left column);
N-phase: 1/f noise-like spectra (middle column);
C-phase: 1/f noise-like spectra superimposed by equidistant peaks (right column) representing periodic dynamics.

Standard power-spectrum analysis


Due to the limitation of the total number of neurons and measuring technique in Spikey chip, standard power-spectrum analysis has first been applied to single neuron recordings.


$$x(f) = \int_{-\infty}^{+\infty} e^{-2\pi i f t} x(t) dt,$$
$$S_{xx}(f) = |x(f)|^2.$$

Phases Diagram (Power Spectra)



Phases Diagram (Order Parameter)

NICE 2017

Order parameter construction

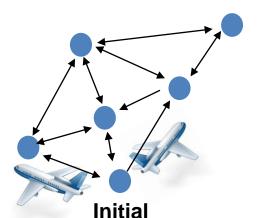
The order parameter construction follows the function,

$$C_{i,j}(\tau) = \frac{1}{\tau} \int_{t_0}^{t_0 + \tau} \delta_i(t) \delta_j(t) dt,$$

where $\delta_i(t)$ is 1 if neuron i is spiked at time t, and 0 otherwise.

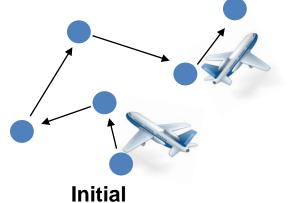
Phase	Typical $< C_{sync} >$
T-phase	$< 10^{-6}$
N-phase	~ 10 ⁻⁴
C-phase	$> 10^{-3}$

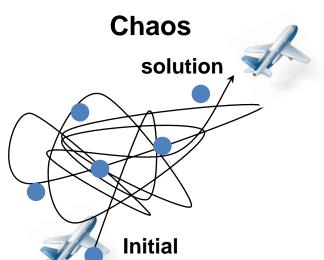
Computing



NICE 2017

Birthplace of the Internet


Thermal equilibrium


solution

N-dynamics

solution

- Many-stop flight with revisiting the solutions (slow search)
- Many-stop flight without revisiting
- Intermittent dynamics
- Jumping between attractors (local minima)
- Non-stop flight over possible solutions (bad for sampling)
- Continuous, fast dynamics
- Difficult to track

	Т	N	С
Sampling	+	+	-
Non-revisiting solutions	-	+	+