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How can networks of spiking neurons 
wire themselves up 

for a specific computational task? 



Experimental data suggest that common models for NN 
learning are incomplete, or even wrong

In the brain:
• Networks continuously rewire themselves 

• This rewiring is based on an inherent stochastic 
component of synaptic plasticity, that even continues 
in the absence of neural activity

• STDP, Hebb, and other activity-dependent (deterministic) learning rules 
contribute at most 50% of the actual synaptic plasticity

Dvorkin, Ziv, 2016

Svoboda Lab
Lichtman Lab

estimated correlation
of weigths of multiple 
synapses that connect 
the same axon with the  
same dendrite:
r = 0.23 Kasthuri et al., 2015



What do these biological data suggest for the design of 
continuously learning  neuromorphic systems?

• We need to change our learning rules in order to accomodate rewiring

• We need new concepts and theories to design learning rules that integrate 
rewiring with synaptic plasticity in a goal-oriented manner

D. Kappel, R. Legenstein, S. Habenschuss, M. Hsieh and W. Maass
Reward-based self-conguration of neural circuits. 2017, in preparation.



• We introduce a real-valued parameter 𝜃𝜃𝑖𝑖 for each potential synaptic 
connection i. This synaptic connections becomes functional when 𝜃𝜃𝑖𝑖
becomes  positive, in which case 𝑤𝑤𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝜃𝜃𝑖𝑖 −𝜃𝜃0 ) is the synaptic weight
(the exponential function provides a better fit to data)

• Plasticity of this potential synaptic connection is regulated by a stochastic differential 

equations (SDE)     𝑑𝑑𝜃𝜃𝑖𝑖 = 𝑏𝑏 𝜕𝜕
𝜕𝜕𝜃𝜃𝑖𝑖

log 𝑒𝑒∗(𝜽𝜽) 𝑑𝑑𝑑𝑑 + 2𝑇𝑇𝑏𝑏 � 𝑑𝑑𝒲𝒲𝑖𝑖

drift                       diffusion
where 𝑑𝑑𝒲𝒲𝑖𝑖 denotes an infinitesimal step of a random walk, b = learning rate,  T = temperature

• The Fokker-Planck equation implies that 𝟏𝟏
𝒁𝒁
𝒑𝒑∗(𝜽𝜽)

𝟏𝟏
𝑻𝑻 is the resulting stationary distribution

of the vector 𝜽𝜽 of all these network parameters  to which the stochastic system converges  
(but in general no convergence to a particular network configuration 𝜽𝜽 !).

• Hence the drift terms in the SDEs can „program“ a desired target performance into the 
network.

• I will focus on the case  𝒑𝒑∗ 𝜽𝜽 ∝ 𝒑𝒑𝐒𝐒 𝜽𝜽 � 𝑬𝑬 𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡𝑡𝑡 𝑟𝑟𝑒𝑒𝑤𝑤𝑡𝑡𝑟𝑟𝑑𝑑 𝛉𝛉]
where 𝑒𝑒𝑆𝑆 𝜽𝜽 is a prior that formalizes structural constraints (e.g., sparse connectivity).

A new conceptual and mathematical framework for integrating 
continuous rewiring into network plasticity  



A closer look at the SDE  𝑑𝑑𝜃𝜃𝑖𝑖 = 𝑏𝑏 𝜕𝜕
𝜕𝜕𝜃𝜃𝑖𝑖

log𝑒𝑒∗(𝜽𝜽) 𝑑𝑑𝑑𝑑 + 2𝑇𝑇𝑏𝑏 � 𝑑𝑑𝒲𝒲𝑖𝑖

for 𝒑𝒑∗ 𝜽𝜽 ∝ 𝒑𝒑𝐒𝐒 𝜽𝜽 � 𝑬𝑬 𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡𝑡𝑡 𝑟𝑟𝑒𝑒𝑤𝑤𝑡𝑡𝑟𝑟𝑑𝑑 𝛉𝛉]

If one chooses a Gaussian for the prior 𝑒𝑒𝑆𝑆 𝜃𝜃 , the derivative of its log 
models in conjunction with the diffusion term an Ornstein-Uhlenbeck process 
for 𝜃𝜃𝑖𝑖 i.e., for the log of the weight  𝑤𝑤𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝜃𝜃𝑖𝑖 −𝜃𝜃0 ), which fits data quite from 
the Lab of Noam ZIv quite well:

The derivative of the log of the second term 𝑬𝑬 𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡𝑡𝑡 𝑟𝑟𝑒𝑒𝑤𝑤𝑡𝑡𝑟𝑟𝑑𝑑 𝛉𝛉] becomes significant only 
for 𝜃𝜃𝑖𝑖 >0. It then approximates standard rules for reward-gated STDP (with eligibility 
traces similar as reported in  (Yagishita et al., Science 2014).

If the temperature T is sufficiently large, this model
reproduces the experimentally found strong contribution 
of activity-independent synaptic plasticity



We have selected the following biological paradigm for a first test 
of this new model for network plasticity

Emergence of reproducible spatiotemporal activity during motor learning;
Andrew J. Peters, Simon X. Chen & Takaki Komiyama;  Nature(510) 2014



Our model qualitatively reproduces the experimental data 

some spines vanish, new 
ones emerge, and some of 
them become stable

A stereotypical assembly dynamics 
ermerges during learning



In addition, our model introduces 
lifelong learning capability into the neural network 

The parameter vector 𝜽𝜽 keeps moving even after good performance has been reached within 
some low-D manifold (red color indicates good performance).

Functional benefit of ongoing stochastic 
parameter dynamics:  
Immediate and automatic compensation for 
a drastic network perturbation: Switch of 
function of  the populations U and D after 24h 

This switch gives rise to a reorganization of network 
connections, and of the assembly dynamics, similar 
as observed in the biological data



A note on the learning (compensation-) speed of the model

This speed can be tuned by

--starting with a suitable network scaffold (e.g., reflecting genetically encoded 
aspects of brain networks)

--choosing (and adapting)  suitable priors

--optimizing the sampling process (e.g., Hamiltonian, rather than Langevin)

--modulating the temperature T (like in simulated annealing)



Resulting new perspective of network learning from a more 
abstract perspective

1. We arrive at a Bayesian model for network plasticity, 
where a prior (encoding e.g. structural constraints,
innate knowledge, previously learned information....) 
modulates network  plasticity

2. Gradient ascent in network network fitness is
replaced by stochastic sampling from a posterior 
distribution

3. On the abstract level of reinforcement learning 
theory our model proposes to replace policy gradient 
by continuous  Bayesian policy sampling

4. This continuous sampling aspect provides automatic 
compensation for changes in the network or task

expected reward

posterior



Summary

• Experimental data suggest a significant difference between the 
organization of neural network plasticity in the brain on one hand, and 
current models for network plasticity in neuromorphic systems and ANNs on 
the other hand

• Experimentally observed continuously ongoing stochastic network 
reconfiguration in the brain supports exploration for self-organization 
and reinforcement learning

• We propose that this model provides a step towards lifelong autonomous 
learning capability of neuromorphic systems
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