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Demands for Neuromorphic Hardware
 Deep learning in Cloud: huge training “labeled” dataset, high 

precision training, power-hungry, etc.

Google Cat:
16,000 CPU cores MS Residual-CNN: 8 GPUs

 Edge (IoT) computing needs novel hardware / algorithms
– Local to the sensor, real-time inference, small area and low-power
– Adaptive on-line learning with continuous (possibly unlabeled) data

30 
frames/s

GPU
FPGA

Neuromorphic ASIC

Presenter
Presentation Notes
Today, deep learning is a hot research area and it has demonstrated a great success in intelligent tasks such as image classification, speech recognition. However, the deep learning relies on the extensive computational resources, and huge amount of “labeled” training dataset, and it typically needs high precision training in cloud-like environment like clusters and GPUs. which is power-hungry. For example, the Google’s algorithm is capable of recognizing the cat faces in YouTube Video, but it used 16,000 CPU cores , 100k W and 3 days to train the neural network. Microsoft’s residual deep convolutional neural network won the ImageNet competition in 2015 with 8 GPU accelerators. Certainly the GPUs/FPGAs are not suitable for mobile and IoT based edge computing, which requires the decision making local to the sensor, and can perform real-time inference, with small area and low-power. It is more attractive to have adaptive on-line learning with continuous (possibly unlabeled) data. These demands require the development of the neuromorphic ASIC chips that employs novel hardware and run novel algorithms on chip. 
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A Shift in Computing Paradigm towards Neuro-inspired

Resistive synaptic device

Long-term vision: Brain-like computer

Presenter
Presentation Notes
So what is the new architecture? Here is the shift in computing paradigm towards neuro-inspired computing. Traditionally, the von-Neumann architecture has CPU and memory separated, the back and forth data transfer in the data bus has become a memory wall problem when dealing with large dataset in the deep learning algorithms. Therefore the neuro-inspired architecture distributes the computation into a massively connected neural network, each neurosynaptic core has local neurons (the simple computing units) and synapses between neurons (the local memory). This parallel computing architecture could solve the traffic jam in the data bus in the convectional architecture. Then how would the resistive device play a role in the neuro-inspired computing? If we compare a biological synapse with an artificial synapse based on RRAM, there are many similarities, for example, the bio-synapse changes its conductance by releasing the Ca2+ or Na+ ions into the junction, while the resistive synapse changes its conductance by moving the oxygen ions and vacancies in the oxide materials. The learning happens in a neural network by changing the conductance in synapses essentially. The long-term vision is to build a brain-like computer. There are many large programs in the recent years targeting at this field, e.g. DARPA Synpase, DARPA UPSIDE, NSF Expeditions on Computing, and recently SRC’s E2CDA and JUMP program. I started the research in this field at end of PhD study, and am a pioneer in this field and my NSF CAREER award is on this topic. 
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Current Status of eNVM based Neuromorphic Research
 Mostly focused on device-level engineering…

 A few array-level demo with simple pattern classification, such as: 
– UCSB’s 12*12 crossbar array with memristors (Nature 2015)
– IBM’s 256*256 1T1R array with PCM (IEDM 2015)
– ASU’s 12*12 crossbar array with multilevel RRAM (EDL 2016)
– ASU-Tsinghua’s 400*400 1T1R array with binary RRAM (IEDM 2016)

Performance metrics Desired Targets
Device dimension < 10 nm

Multilevel states number >100* with a linear symmetric update
Energy consumption <10 fJ/programming pulse

Dynamic range >100*

Retention >10 years*

Endurance >109 updates*

Note: * these numbers are application-dependent
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Cross-point Architecture for Accelerating 
Weighted Sum and Weight Update 
 Weighted sum (inference): all cells are activated in parallel, summing 

up column currentperform vector-matrix multiplication 

 Weight update (training): cell’s conductance could be updated by 
applying programming voltage from row/column at the same time. 

Task Operations

𝑾𝑾 � 𝑿𝑿 𝐼𝐼𝑖𝑖 = �
𝑗𝑗

𝐺𝐺𝑖𝑖𝑗𝑗 � 𝑉𝑉𝑗𝑗

𝑾𝑾
update

∆𝐺𝐺𝑖𝑖𝑗𝑗= 𝜂𝜂 � 𝑉𝑉𝑖𝑖 � 𝑉𝑉𝑗𝑗

(analog computation inside the array, may need ADC at edge of array)

Presenter
Presentation Notes
Let’s first look at how the cross-point can accelerate.In algorithms, there are many operations like vector multiple by matrix, which is very time consuming. Here we apply voltages representing vector to the row, and use the conductance of the resistive devices to represent the weight matrix DAccording to KCL, the column current is the weighted sum. To update the weight D, we can apply voltages from the two ends, row and column, the weight change is proportional to the values at the end of row and column, in many delta-rule based learning algorithms. We need to notice that in the read, all cells are used, no sneak path.In the write, if not all cells are programmed in parallel, still selectors are needed. 
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Binary RRAM and Analog RRAM Synaptic Devices
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• Binary Synapses: Conventional filamentary switching RRAM with 
abrupt set and gradual reset, multilevel states achievable in the 
reset, could be used for offline training.
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• Analog Synapses: Special interfacial switching RRAM with both 
smooth set and reset, attractive for online training.

Presenter
Presentation Notes
Let’s look at what characteristics of resistive devices are needed for the learning. There are two types of training:Offline:Online: 
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Realistic Analog Device’s Weight Update Behaviors 

• Nonlinearity in weight update
• Device variations
• Non-zero off-state conductance

How would these non-ideal effects impact learning accuracy?

Presenter
Presentation Notes
There are many non-ideal effects of the resistive devices, For example in our TaOx/TiO2, and other reported devices.
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NeuroSim: A Simulator from Device to Algorithm

Input: 
• Network 

structure, 
• Training/testing 

traces
• Array type and 

technology node
• Device type and 

non-ideal factors

Output:
• Area,
• Latency, 
• Energy,
• Accuracy

Circuit level

Algorithm level

MNIST 
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Input layer Output 
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Synapse 
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Digital RRAM
……

Analog RRAM

Non-ideal properties:
- Nonlinear weight update 
with finite number of 
states
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- Variations (Device-to-
device and cycle-to-cycle 
weight update variation, 
and read noise)

Device parameters:
- Cell height and width
- Maximum and minimum 
conductance
- Read/write voltage and 
pulse width

NVM device model

SRAM device model
SRAM
Device parameters:
- Cell height and width
- Transistor width
- Sensing voltage
- Read/write latency and 
energy

Parameters:
Network size, learning 
rate, thresholding 
value, etc.

WL
BL BLB

Key operations:
- Feed forward 
(weighted sum)
- Back propagation 
(weight update)
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Model Calibration (Latency, Energy, Leakage)  

Benchmark at 45 nm with PTM model
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Model Calibration (Area)
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Layout Area: 1.5810E+04 um2 Model Area: 1.5454E+04 um2

Layout using 45 nm NanGate PDK
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Impact of Weight Precision and Weight Update 
Nonlinearity in Analog Synapses

• Nonlinearity significantly degrades accuracy for online learning if 
using analog synapses.

• A multilayer perceptron (MLP) 400-200-10 network is used for 
benchmarking.

• At least 6-bit is required for MNIST dataset online learning, while 
1 or 2-bit may work for offline classification. 
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Benchmark of Reported Analog Resistive Synapses

Reported analog eNVMs for learning Desired analog eNVMs for 
learning

eNVM type PCMO Ag:a-Si TaOx/TiO2 AlOx/HfO2
Targeted 
eNVM Ideal eNVM

# of bits 5 6 6 5 6 6
Nonlinearity 

(weight 
increase/decreas

e)

3.25/5.82 1.13/2.65 1.13/0.72 3/1 1/1 0/0

RON 23 MΩ 26 MΩ 5 MΩ 16.9 kΩ 200 kΩ 200 kΩ
ON/OFF ratio 6.84 12.5 2 4.43 50 50
Weight update 
cycle-to-cycle 
variation (σ)

<1% 3.5% <1% 5% 2% 0%

Accuracy for 
online learning 10% ~75% ~10% ~10% ~90% ~94.8%

Accuracy for 
offline 

classification
~13% ~51% ~10% ~10% ~94.5% ~94.5%

Green: good attributes, Red: major cause of learning failure
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Binary Neural Network (BNN)
• Precision Reduction to Ternary Weight (+1,0,-1) and Binary Neuron for 

Propagation
• Higher precision (e.g. 8 bit) is kept for weight update only (because ΔW 

is small)

S. Yu, et al. IEDM 2016

MNIST dataset

… ...

… ...

…

Input Layer

Hidden 
Layer

Output 
Layer

Ba
ck

-P
ro

pa
ga

tio
n 

of
 E

rr
or

s …a1 an

p1 pn

Ternary for backpropagation

Fe
ed

fo
rw

ar
d 

In
fe

re
nc

e

 Ternary for feedforward

W1-2

W2-3

400

200

10

n-
bi

t g
ra

di
en

t d
es

ce
nt

 

fo
r w

ei
gh

ts
 u

pd
at

e

0 10 20 30 40 50

Training Epoch

90

91

92

93

94

95

96

97

98

A
cc

ur
ac

y 
[%

]
All floating point

Avg floating point
8bit weight & neuron
Avg 8bit weight & neuron
8bit weight & 1bit neuron
Avg 8bit weight & 1bit neuron
Ternary weight & 1bit neuron
Avg ternary weight & 1bit neuron

0 10 20 30 40 50

Training Epoch

93

94

95

96

97

A
cc

ur
ac

y 
[%

]

Avg 400-200-10
400-200-10

Avg 400-400-10
400-400-10

Avg 400-800-10
400-800-10

(a) (b) (c)

• Followed the recent trends in machine/deep 
learning, e.g. BinaryNet and XNOR-Net
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16 Mb Macro Chip (Tsinghua)

Block0
512*1024

Block1
512*1024

Block5
512*1024

Block4
512*1024

Block0
512*1024

Block1
512*1024

Block5
512*1024

Block4
512*1024

Block2 Block3 Block7 Block6

Block2 Block3 Block7 Block6

AnalogI/O

Block10 Block11 Block14 Block15

Block10 Block11 Block14 Block15

Block8 Block9 Block13 Block12

Block8 Block9 Block13 Block12

3-stage gate

3-stage gate

3-stage gate

Data buffer

3-stage gate

3-stage gate

3-stage gate

Digital I/O

Dobus01
<0:7>

Dobus23
<0:7>

Dobus45
<0:7>

Dobus67
<0:7>

Dobus1415
<0:7>

Dobus1213
<0:7>

Dobus89
<0:7>

Dobus1011
<0:7>

Dout
<0:7>

Capacity 16 Mb
Tech Node 130 nm

VDD_Digital 1.8 V
VDD_Analog 5 V
VWL_SET 2-5 V/ 50 ns
VBL_SET 2-3 V/ 50 ns

VWL_RESET 3.5-5 V/ 50 ns
VSL_RESET 2-3 V/ 50 ns
I/O Width 8

Chip designed and fabricated by Huaqiang Wu’s group in 
Tsinghua University
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RRAM Stack and Endurance of RRAM 

  
 RRAM

 Cell

54.3 nm
9.1 nm

HfOx based RRAM integrated 
between M4 and M5 on top of CMOS

Measured endurance ~1E6 cycles

Courtesy of Huaqiang Wu (Tsinghua University)
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Implementation of BNN on 16 Mb RRAM Chip for 
Offline Classification
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Error (in red) occurs, bit yield ~99%
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Impact of RRAM Finite Bit Yield for Classification

• The software baseline with high precision classification has accuracy ~97%.
• BNN with 1-bit classification (with sign) has accuracy ~96.3%
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• For MNIST dataset, 99% bit yield is sufficient to maintain ~96.3%
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Precision Reduction for Training

Online training needs higher precision than offline classification, because 
the small error accumulation is needed in backpropagation
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6-bit is needed for MNIST dataset, thus 6 binary RRAM cells are grouped 
for implementing one synapse
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Distribution of RRAM Updates During Training
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• Most cells update less than endurance limit (104 cycles)
• LSB updates more than MSB, and W2-3 updates more than W1-2

W1-2 W2-3
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Impact of RRAM Finite Endurance on Training
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Lower endurance results in lower peak of accuracy. With 104 cycles, 
~96.9% accuracy is achievable for online training 
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NeuroSim Simulation Set-up for Analog and Binary 
Synapses

“Analog” synapse “Binary” synapse
# bits 6 6

Nonlinearity (weight 
increase/weight decrease)

0.72/0.72 --

RON 200kΩ 200kΩ
ON/OFF ratio 50 50
Read voltage 0.5 V 0.5 V
Write voltage 2 V (for both weight increase 

and decrease)
2 V

Write pulse width 100 ns per pulse 100 ns
Resistance of access 

transistor in 1T1R
10kΩ 10kΩ

Read noise 2.89% --
Array type Pseudo-crossbar Traditional 1T1R
Array size 400x100 and 100x10 400x600 and 100x60
Tech node 14 nm 14 nm
Wire width 40 nm 40 nm
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Benchmark Results of Analog and Binary Synapses
“Analog” synapse “Binary” synapse

Accuracy 82.17% 94.03%
Area 1560.8 µm2 2678.2 µm2

Total feed forward 
latency

1.1044e-01 s 2.7063e+00 s

Total weight 
update Latency

1.7640e+05 s 3.2283e+03 s

Total feed forward 
energy

4.4835e-04 J 2.3709e-03 J

Total weight 
update energy

2.7115e+00 J 8.0447e+00 J

Leakage 26.631 µW 15.397 µW

Binary synapses could be a near-term solution, while a “perfect” 
analog synapses could bring in many benefits in the long run
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Summary
 Today’s RRAM technology (even binary) can support offline 

classification with low-power, fast and accurate recognition.  

 For online training, “analog” synapses with continuous weights 
need to overcome grand challenges such as nonlinear weight 
update, and slow programming speed (as multiple pulses are 
needed to tune the weights).

 Binarizing neural network with low-precision weights, allows 
today’s binary RRAM for online training with high accuracy, which 
also shows a good resilience to limited yield and endurance, as 
shown in our demonstration of 16 Mb RRAM chip. 

 Trade-offs exist between binary and analog synapse 
implementations: binary synapses are good for high accuracy and 
fast training speed, but with overhead in the chip area and dynamic 
energy.
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