2021 Packaging Review August 17-19 – Virtual Event

https://www.src.org/calendar/e007229/

Student Poster Information

(Abstracts)

Featuring: Diego Vaca Allison Osmanson Yi Ram Kim Jacob Dawes

Display Room: Gather Town
Bonding of Highly Oriented Pyrolytic Graphite as Heat
Spreader for Portable Devices
Task 2947.001
Highly oriented pyrolytic graphite (HOPG) is considered to be used as heat spreaders for the thermal management of hot-spots on chips in mobile devices. However, their superior thermal properties are not fully exploited because the material and processes used to bond the HOPG to the chip can obstruct the heat flow. In this work, we compared the mechanical strength of three bonding solutions: gold-to- gold and copper-to-copper metallurgical bonding, CYTOP [®] , which is a polymer with good flowability and capable of producing thin bond lines (BL), and nanoporous copper. After bonding, shear tests were performed on the samples. The results indicate that the maximum shear force measured on 5 x 5 mm2 samples was in the range of 1.0 to 1.5 kgf, irrespective of the bonding technique. Further analysis revealed that the joint fractures in the HOPG itself by delamination, and not in the BL. This means that the selection of the bonding process must consider important factors such as the thermal behavior of the bond, the cost, the adaptation of the process to usual industrial practices, provided that the HOPG will comply with the mechanical demands of the system.
Diego Vaca/ Georgia Tech
Dept: Mechanical Engineering Faculty Advisor: Dr Satish Kumar Graduation Date: July 2022 Email: dvaca3@gatech.edu
Other Authors on the Poster: Dr. Vanessa Smet, Dr. Yogendra Joshi, Dr. Satish Kumar

Poster 2	Display Room: Gather Town
Poster Title:	Mechanical Effects of Pulsed-DC Conditions on
	Electromigration Failure Kinetics in Wafer-Level Chip Scale
	Packages
Task Number	2949.001
Abstract:	Accelerated electromigration (EM) studies on Wafer-Level
	Chip Scale Packages (WCSPs) suggest that the solder joint
	failure in pulsed direct current (pulsed-DC) conditions can be
	assisted by thermal fatigue mechanism. This phenomenon
	was especially distinctive in samples tested under higher
	duty factors (DF) of low-frequency pulsed-DC. These samples
	showed a drastic reduction in mean-time-to-failure
	compared to samples subjected to lower DF pulsed-DC or DC
	conditions, suggesting the existence of a mechanism
	accelerating the failure. The cross-sectional failure analysis
	of failed samples revealed a crack along the solder bump
	and under-bump metallization (UBM) interface, evidence of
	the involvement of mechanical failure. Subsequent analysis
	of the failure indicates that the cracking is rooted to the
	thermal fatigue by pulsation in temperature (and stress)
	with the pulse. Cyclic stress generation and plastic
	deformation by pulsating joule heat/temperature is believed
	to be responsible for the involvement of the fatigue in the failure mechanism. The finite element method (FEM) of the
	thermal fatigue mechanism which occurs in pulsed-DC
	conditions is implemented to gain a theoretical
	understanding of the mechanical effects of pulsed-DC failure
	on EM reliability.
Student Presenter /	Allison T. Osmanson
University:	University of Texas at Arlington
	Dept: Materials Science and Engineering
	Faculty Advisor: Dr. Choong-Un Kim
	Graduation Date: 12/2021
	Email: allison.osmanson@mavs.uta.edu
	Other Authors on the Poster: Yi Ram Kim, Mohsen Tajedini,
	Choong-Un Kim

Poster 3	Display Room: Gather Town
Poster Title:	Microstructural Effects on Electromigration Failure Kinetics
	in Wafer-Level Chip Scale Packages
Task Number	2949.001
Task Number Abstract:	2949.001 Previous electromigration (EM) studies on Wafer-level Chip Scale Packages (WCSPs) have indicated that the EM failure rate may be impacted by the grain orientation of Sn in the solder joint. The effect may exist because the body-centered tetragonal crystal structure of Sn may provide an easy EM path along c-axis, which can accelerate the EM failure kinetics in a significant degree. We have investigated this possibility by conducting microscopic investigation of the Sn grain orientation in early and late failures. Our investigation involves the use of scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD), and inspection of degree of alignment between [001] grain orientation and EM direction. Our study confirms the so-called the alignment effect because the early failed joints are found to contains
	grains with c-axis alignment. The results suggest that the alignment effect needs to be addressed in order to improve EM reliability of solder joint. Control of grain orientation in solder joint may be the simplest way of achieving such goal, motivating ongoing studies of ours.
Student Presenter /	Yi Ram Kim
University:	University of Texas at Arlington Dept: Materials Science and Engineering Faculty Advisor: Dr. Choong-Un Kim Graduation Date: 12/2021 Email: <u>yiram.kim@mavs.uta.edu</u>
	Other Authors on the Poster: Allison T. Osmanson, Mohsen Tajedini

Poster 4	Display Room: Gather Town
Poster Title:	Heterogeneous Sensor System in Package (SSiP) Integration
	using Wafer-Level Molding
Task Number	2950.001
Abstract:	High-end electronic systems increasingly demand advanced packaging solutions such as fan-out wafer level packaging (FOWLP) to enable a broad array of system-in-package (SiP) devices at a competitive price point. In addition to design re- use, multi-chip integration at the package level allows each block to be implemented in an optimal CMOS process node for that block. This approach may combine circuits and devices from multiple process technologies, including MEMS transducers, optical components, magnetic materials, biosensor substrates, or low-loss RF materials. Leveraging FOWLP alongside high-end 3D printing provides a framework for highly reconfigurable redistribution layers and rapid prototyping of Sensor System in Package devices using a library of ICs, sensors, actives, passives, and other materials for electrical and optical functionality. This modular, on-demand manufacturability of multi-material and multicomponent electronic systems within a shared substrate, compared to PCBs, fixed-tooling, and Si-only SiP approaches, enables rapid functional diversification and co-location of heterogeneous components.
Student Presenter /	Jacob Dawes
University:	Oregon State University
	Dept: Electrical and Computer Engineering Faculty Advisor: Matthew Johnston Graduation Date: 12/23 Email: dawesj@oregonstate.edu