III-V MOSFETs for Logic: From Failure to Success and Back?

Jesús A. del Alamo

Massachusetts Institute of Technology, Cambridge, MA, USA

SRC "From Failure to Success" Seminar Series

Online, January 13, 2022

Acknowledgements:

- Students and collaborators: D. Antoniadis, X. Cai, J. Grajal, J. Lin, W. Lu, A. Vardi, X. Zhao
- Sponsors: Applied Materials, DTRA, Intel, KIST, Lam Research, Northrop Grumman, NSF, Samsung, SRC

· Labs at MIT: MTL, EBL, MIT.nano, MRL

Contents

GaAs: the semiconductor of the future or the quest for III-V logic

- 1. GaAs MESFETs
- 2. GaAs and InGaAs HEMTs
- 3. InGaAs MOSFETs
- 4. Going forward

1. GaAs Metal-Semiconductor Field-Effect Transistor (MESFET)

First MESFET

SOURCE OHMIC CONTACT SEMICONDUCTOR LAYER INSULATING SUBSTRATE

Mead, Proc IEEE 1966

First MESFET IC

Van Tuyl, JSSC 1974

GaAs MESFET ICs by GigaBit Logic

Cray-3 Supercomputer, 1993

2. The High Electron Mobility Transistor (HEMT)

A New Field-Effect Transistor with Selectively Doped GaAs/n-Al_xGa_{1-x}As Heterojunctions

Takashi MIMURA, Satoshi HIYAMIZU, Toshio FUJII and Kazuo NANBU

Fujitsu Laboratories Ltd., 1015, Kamikodanaka, Nakahara-ku, Kawasaki 211

(Received March 24, 1980)

300 K 77 K

APL 1980

First HEMT IC

"The switching delay of 17.1 ps is the lowest of all the semiconductor logic technologies reported thus far."

Mimura, JJAPL 1981

"HEMT technology is presenting new possibilities for highspeed low-power very-large-scale-integration."

HEMT ICs ride Moore's Law

1 Kb SRAM

1984: 1 Kb SRAM (7,244 HEMTs, 8.7 mm²) 1984: 4 Kb SRAM (26,864 HEMTs, 21 mm²) 1987: 16 Kb SRAM (107,519 HEMTs, 24 mm²) 1991: 64 Kb SRAM (>462,000 HEMTs, 48 mm²)

Watanabe, TED 1987 Abe, JSSC 1991 Suzuki, JSSC 1991 Abe, JVST1987

HEMT Low-Noise Amplifier

First mass-market product (1987):

 $0.25 \ \mu m$ GaAs HEMTs for LNA of Direct Broadcasting Satellite receiver

By 1988, world wide production of HEMT receivers: 20 million/year

GaAs HEMT Electronics

TriQuint and Skyworks Power iPhone 5

UMTS-LTE PA module Chow, MTT-S 2008

40 Gb/s modulator driver Carroll, MTT-S 2002

77 GHz transceiver Tessmann, GaAs IC 1999

Single-chip WLAN MMIC, Morkner, RFIC 2007

Bipolar/E-D PHEMT process

Henderson, Mantech 2007

InGaAs Quantum-Well HEMT

- InP lattice constant ("InP HEMT")
- Quantum-well channel
- Delta doping

InGaAs HEMT: f_t record vs. time

- Highest f_T of any FET on any material system
- Little progress in last 10 years \rightarrow InGaAs HEMT at scaling limit

InGaAs HEMTs: circuit demonstrations

10-stage 670 GHz LNA

Leong, IPRM 2012

Sarkozy, IPRM 2013

80 Gb/s multiplexer IC

Wurfl, GAAS 2004

6-stage 600 GHz LNA

Tessmann, CSICS 2012

3. InGaAs HEMT vs. MOSFET

HEMT not suitable for logic: too much gate leakage current

MOSFET incorporates gate oxide \rightarrow gate leakage suppressed

Historical evolution: InGaAs MOSFETs vs. HEMTs

Progress reflects improvements in oxide/III-V interface

What made the difference? Atomic Layer Deposition (ALD) of oxide

ALD eliminates surface oxides that pin Fermi level

→ "Self cleaning"

Huang, APL 2005

Clean, smooth ← interface without surface oxides

- First observed with Al₂O₃, then with other high-K dielectrics
- First seen in GaAs, then in other III-Vs

Transconductance of Planar Si vs. InGaAs MOSFETs

n-MOSFETs in Intel's nodes at nominal voltage

InGaAs exceeds Si

٠

Rapid recent progress

CORRECT OF THE

"Comparisons always fraught with danger..."

Lin, IEDM 2014 EDL 2016

Self-aligned Planar InGaAs MOSFETs

Sun, IEDM 2013, 2014 (IBM)

Kim, VLSI 2012 (U Tokyo)

Huang, IEDM 2014 (UCSB)

Chang, IEDM 2013 (TSMC)

InGaAs FinFETs

80°

InAs

InAlAsSb

15-nm-wide Fin

15 nm

HKMG

inAlAs

ZrO₂

PdAu

Oxland, EDL

2016 (TSMC)

Thathachary,

VLSI 2015

(Penn St.)

Djara, EDL

2016 (IBM)

High-K gate dielectric stack InGaAs QW fin InAlAs bottom barrier

> Radosavljevic, IEDM 2011 (Intel)

Kim, IEDM 2013 (Sematech)

Waldron VLSI 2014 (IMEC)

Nanoscale 3D Etching of InGaAs

Top-down approach using BCI₃/SiCI₄/Ar RIE + digital etch

Vardi, VLSI 2016, EDL 2016, IEDM 2017

- Sub-10 nm fin width
- Aspect ratio > 20
- Vertical sidewalls

D=5 nm Aspect Ratio > 40 Lu, EDL 2017

MIT's Nanoscale InGaAs FinFETs

Vardi, IEDM 2017

- Si-compatible process
- Contact-first, gate-last process
- Fin etch mask left in place → <u>double-gate MOSFET</u>

Fin-Width Scaling of InGaAs FinFETs

Vardi, IEDM 2017

- Poor W_f scaling of g_m and S
- g_m well below that of Si FinFETs

Thermal Atomic Layer Etching

Gentle etching process: gas-phase, plasma free

- HF-pyridine: fluorinates surface
- DMAC (dimethyl-aluminum chloride): etches surface
- Isotropic

Collaboration with S. George (U. Colorado, Boulder)

Lu, IEDM 2018, NanoLett 2019

In-situ Thermal Atomic Layer Etching + Atomic Layer Deposition

Thermal ALE ≈ inverse of ALD

Can be done in the same reactor:

S. George (U. Colorado, Boulder)

Suspended InGaAs Fins by TALE+ALD

InAlAs etches faster than InGaAs \rightarrow suspended fins!

Fins undercut below ~20 nm

Lu, IEDM 2018, NanoLett 2019

Suspended InGaAs Fins by TALE+ALD

Lu, IEDM 2018, NanoLett 2019

3 nm wide suspended InGaAs fin

Suspended InGaAs FinFET with $W_f = 2.5$ nm

InGaAs suspended FinFET, W_f =2.5 nm

First transistor of any kind in any material system by Thermal ALE

Lu, IEDM 2018, NanoLett 2019

Key benefits of *in-situ* TALE + ALD

Benchmark with FinFETs made through conventional process on same heterostructure (IEDM 2017)

Key benefits of *in-situ* TALE + ALD

- 60% enhancement in peak transconductance
- Record among InGaAs FinFETs

Lu, IEDM 2018

27

Key benefits of *in-situ* TALE + ALD

- Significant enhancement in subthreshold swing
- Nearly ideal for all W_f

Lu, IEDM 2018

Many requirements for a successful logic technology

- ON current
- OFF current
- Operating voltage
- Scalability
- Stability
- Manufacturing robustness
- CMOS
- Si compatibility

III-V MOSFETs: not worth the trouble for logic

Going forward

InGaAs promising for THz, high-speed logic and ultra-low noise applications

THz systems

Integration with CMOS

Quantum computing

650 GHz PA (Northrop Grumman)

Zota, IEDM 2019

https://www.ibm.com/bl ogs/research/wp-conte nt/uploads/2018/03/IB M-quantum-computer_ small.jpg

Radisic, TMTT 2012

Evolution of cellular technology

1-10 Tbps

$5G \rightarrow 6G$:

from "connected things" to "connected intelligence"

"6G Mobile Networks", Wu et al. eds, Springer 2021

5G vs. 6G KPIs

Parameters	5G	6G
Data rate: downlink	20 Gb/s	> 1 Tb/s
Data rate: uplink	10 Gb/s	1 Tb/s
Traffic capacity	10 Mb/s/m ²	$1-10 \text{Gb/s/m}^3$
Latency	1 ms	10–100 µs
Reliability	Upto 99.999%	Upto 99.99999%
Mobility	Upto 500 km/hr	Upto 1000 km/hr
Connectivity density	10 ⁶ devices/Km ²	10 ⁷ devices/Km ²
Security and privacy	Medium	Very high

"6G Mobile Networks", Wu et al. eds, Springer 2021

5G vs. 6G Frequency Bands

For 6G: need technologies at f >100 GHz

SRC Decadal Plan for Semiconductors 2021

Semiconductors for mm-wave transistors

Fundamental breakdown voltage- f_T trade-off:

- GaN best for power
- InGaAs (InP) best for high frequency

Shinohara, TED 2013

From Failure to Success to ...?

- GaAs MEFET for logic
 - → GaAs MESFET microwave systems
 - \rightarrow GaAs, InGaAs HEMT
- InGaAs HEAT for logic
 - \rightarrow InGaAs HEMT for communications, sensing, science
 - \rightarrow Heterojunction engineering and science
 - → InGaAs MOSFET
- InGaAs MOXFET for logic
 - \rightarrow unpinned III-V surface by ALD
 - \rightarrow in-situ TALE + ALD
 - → nanoscale 3D etching technology of III-Vs
 - \rightarrow Quantum computing and 6G communications systems?

Epilogue:

Kroemer's Lemma of New Technology

"The principal applications of any sufficiently new and innovative technology have always been – and will continue to be – applications created by that technology."

Kroemer, Rev Mod Phys 2000