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UCLA CHIPS

A UCLA Led partnership to develop Applications, Enablement and Core
technologies and the eco-system required for continuing Moore’s Law at
the Package and System Integration levels and develop our students &
scholars to lead this effort

At the university, our main product is our Students.
Our research and development is a vehicle to educate and train our students

Our students learn by making mistakes
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Two Examples —the power of mistakes

* Electromigration —how a "bad” assignment impacts things in a good way decades later
» Salicide - the case of the leaky furnace leads to success in the nick of time

* Embedded DRAMS — how some problems just go away if you think hard enough (and wait
long enough....)
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Electromigration in fine Al-Cu™ wires
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Linewidth dependence of electromigration in evaporated Al-0.5%Cu 1 f

S. Vaidya, T. T. Sheng, and A. K. Sinha
Bell Laboratories, Murray Hill, New Jersey 07974
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We don’t care when half our
sample fails — we worry about .}

the first one failing ! , A
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This led to the so-called Sandwich metallurgy

This led to the
Extrusion monitor

Hafnium

Al-Cu

But the new failure mode was by hillock formation: shorts to neighboring wires
And passivation cracking

UCLA Samueli

School of Engineering



Two more big events

* The transition from Bipolar
chips to CMOS chips

— The power and currents
dropped significantly

— Electromigration was less of a
problem

— Went back to Al-Cu

* But Wire delay was mounting

— Made the transition to copper
wires

— Dual damascene with TaN
liners

— Electromigration went away
(for a while at least)
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|_3 CaChES in servers Yielding Large Memory Chips

Requires redundancy

Replace this with

Note: a chip this size
can have as many as

L3 cache used in P5

N |
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Built-in Self Test and repair

Key Enablers: BIST & Redundancy
eTest at High speed

*Very large bandwidth but very few pin-outs

eSolution : Since you have access to a high speed logic technology why not
build the tester on-chip

eNext step : repair faulty chips!

* On chip test engine
e Hard & Soft Patterns
* Allocates Redundancy

* Tests redundant elements
Generates Fuse String
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Laser Fuses
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Test

Determine repairs

Move wafer to laser fuser

Move repair data to laser fuse
Blow laser fuses

Take wafer back to tester

Test again to verify

Hope nothing breaks again ever!

School of Engineering

*Do not scale & occupy too much
space

"Block wiring and C4s

*Need to be exposed

=Can be blown only at wafer level
="Need precise mechanical alignment
=Require a complex laser fuser

=Require multiple wafer handling and
data manipulation

Net: Laser Fuses are a pain!!

Copper Fuses were even more
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You could heat up a wire till it breaks

But serious
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The Kinder Gentler Fuse

We need to induce an electrical open without needing material to disappear.

FonPD 7w F 8= o
B F=0

=f(T,J%)

Can we employ electromigration of metal lines ?
Modern interconnects are electromigration resistant

Need to control the electromigration and complete in a reasonable
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Key Feat
eFUSE - physical layout =Y FEatres

"Geometry
*Thermal environment

=Current Characteristics

STI - Oxide
Mechanism:

S
(]

= Current driven through silicide TSR

=Temperature rises & gradient set up

59;51276
=Silicide electromigrates but current is sustained as the

P70
Poly Si is hot intrinsic and conductive ‘ |

QU
=Electromigration of silicide is forced to completion
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Poly Si/silicide eFUSE

Intact Fuse

Current
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Further developments

e Optimizing chips for power and performance
* More autonomic functions

* Supply Chain management

* Chip identifiers for authentication

* RFID tags
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Scaling eFUSE

Burdened eFUSE cell size (um?)

— , 1000

100

10
* After some dramatic scaling, scaling eFUSE scaling saturated

1
* In “14” nmit reverse scaled

0.1

150 100 0 0 At the same time there has been another big transition to Hi K metal gate
Node (revl CMOS — No more poly-Si gate

* And 3D stacked memory made even more demands on redundancy

* And yet another opportunity to leverage this new material
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Hafnium Oxide vacancy

 Hafnium Oxide is the gate
dielectric of choice for advanced Vit
CMOS (High K)

Hafnium

Released
oxygen
atom

* Propensity to form oxygen

vacancies e
vacancy _
* Low formation energy V:
acancy
Traps p-Si

B | pooo--

Metal Hf02 IL

* Traps carriers resulting in
threshold shifts
- Similar to SONOS not Floating Gate
- But CMOS compatible!! [
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Clear distinction between low and High states

1 AV,

tha

10gSWVQLUSZ ar ips

Vi Can it be used as a replacement
Vi after for eFUSE with the advantage of

‘ limited rewritability ?

Vit L
.- Befo

AV, > {6V, oV}

v
o Hi-K/ Metal“Gate transistors have inherent fluctuations
* But, shift is larger than the variability due to other sources -> Kothandaraman et al (2015)
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Hardware Results — Multi-Time Pro

PRE

Chip image of
64Kb array

V. Janakiraman et al
VLSI Symp 2016
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W: Write

AV+y (Normalized)

E: Erase
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V14 post write
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Hysteresis

V14 post erase
E2 E3 E4 E5 E6 E7 E8 E9 E10

# of read and erase cycles

b: AVyy Change in Multi-Write (32nm)
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Use of CTT as analog memory

Increasing threshold voltage: The CTT can be programmed and erased

VG'[ IDE 5 : —
GOFFl VG /
L > A |Pre-PR
£ Post-PRG
IFL + Hf N 280mv /0%
—— (] ©
- > nA s /
Reducing threshold voltage: ® =/
o %
pA |
0 0.2 0.4 0.6 0.8 1

Gu et al (2017)
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! Proposed Inference Engine

T I;t;
i=1
Input data = )
encoded as [ ] Integrator Neuron Neuron
binary pulses of |
variable width
BLt1 BLcl BLt2 BlLc2 BLt3 BLc3
D D b » [ 2 D

| -\ U oo

Al =1, — I_ represents the weight of the
i,j)-th synapse
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Stability of the Dot Product Engine

» Measurement time contributes to the difference between measured and
calculated weighted sum Input » Weight matrix = Output
~

measured from t4 to to measured from t3 to t
Immediately after programming 6 hours later 18 hours later
400 - . - - - i 400 : : . . . = 400 y:
P ’ 4 ‘ /(
< 200t é* < 200t " < 200} rd
= A = =
g :*' 2 ° 2 0
£ o 2 ¢ 2 ~
5 -200 - 5-200 g ©-200| v
g ,’ qg-’ od g s
o
B 400} o B -400 ,’"’ B -400 v/
= > 5 Y 4 3 e
8 ° "' £ o" 8 O.’
S600F o 1 g-e0f 7 1 g0} .7 -
- o(y-x) = 20.49 nA 7 o(y-x) = 14.43 nA 7 o(y-x) = 11.12 nA
-800 . . . : . . -800 . ) . 4 . : -800 ' - : : ) : :
-800 -600 -400 -200 0 200 400 -800 -600 -400 -200 0 200 400 -800 -600 -400 -200 0 200 400
Calculated weighted sum (nA) Calculated weighted sum (nA) Calculated weighted sum (nA)
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Recap

* Reliability issues are not necessarily bad news

 When used judiciously, they can be leveraged to solve other
reliability and yield problems
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Salicide — the case of the leaky furnace

Polyscon  Bake off between different metal
candidate: Ti vs Pt, Ni, Co

it e ™ S TR S ;= I * Tiwas preferred because of its higher
v 8 e temperature stability but it required
1' extreme purity of the annealing gas

)—Jl_:;/ L:< i % * But it formed by Silicon diffusion

through the formed silicide to the
1“ el metal silicide interface

\ ; 54 Tish,

: — * The others formed by metal diffusion
_ _— through the silicide into the silicon
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Why is this important ? -Bridging
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The leaky furnace

* Every now and then a leak would develop in the furnace

— Usually because we let it cool too fast

* |n those cases, the resistance of the silicide would be very high

But there would be no bridging
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So, what was happening ?
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So, what was happening ?

1000& Ti

3504 Si0,

[ ‘ TYPE Si (100}
REACT 600°C,60'
‘ IN EITHER N, ,He

Fig. 12. Lateral formation of TiSi,. o: Structure. b; SEM micro-
graphs for 4000A Ti on o 1000 thick SiO. window after 8h ot 600°C
and Ti etch. The N, onnealing arrests lateral migration completely, as

compared to He onnealing. Note that the N. anneoled surfoce exhib-
SISSLLSISSSSSD

I A \ its a rough surface morphology.

|\~ REACTEO Ti
¢ ETCH UNREACTED Ti

REACTED Ti

PN E,c&_ The solution was to stop annealing in pure He and anneal in Forming gas
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Titanium Salicide wins round one!

* Titanium Salicide had a ling run — all the way to 0.25 um in
Logic and Memory and well below 90nm in BiICMOS

* There were many process enhancements that were needed to
scale it to these dimensions

— But | decided to quit when | was ahead
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Building embedded DRAM

* The challenges of Building a DRAM in logic technology
— Logic is leaky compared to DRAM
— But logic transistors are significantly higher performance

e The world was divided:

— The DRAM guys: you can never make a DRAM in Logic technology (that’s
why we have DRAM technology)

— The Logic guys: DRAM technology cannot be used for Logic — it sucks

* The challenge was retention time
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But was it ?
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The parable of the two Alaskan Hikers
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In cache applications date gets stale withing a few
clock cycles

So, retention just needs to be a few clock cycles :
100’s of nano Secs vs 100’s of milli Secs

And the refresh rate is completely controllable by the
system unlike in a commodity DRAM

UCLA Samueli

School of Engineering

H NE |
AND PERFORMANCE SCALING



To Conclude

| would like to
thank my
management and
colleagues during
my long career at
IBM for not just
tolerating me but
encouraging me to
make mistakes and
learn
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Never forget what you learned — it
can come in useful later

Be observant: experiments that go
wrong offer useful clues — even if you
did not plan the mistakes

Sometimes roadblocks are not




