

Center for Ubiquitous Connectivity

JUMP 2.0 Theme 2: Communications and Connectivity

Director: Keren Bergman, Columbia University Co-Director: Ali Niknejad, UC Berkeley

Columbia University | UC Berkeley | Massachusetts Institute of Technology University of Illinois Urbana-Champaign | UC Santa Barbara | Princeton University Duke University | Oregon State University | University of Michigan University of Southern California | UC San Diego | Cornell University | Stanford University

SRC e-Workshop: CUbiC Center Plan and Vision

JUMP 2.0: Seven Research Themes

Cognition

- Systems & Architectures for next-gen AI
- Distributed: Heterogeneous, Cloud, Edge

Communications & Connectivity

• Orders of magnitude improvements in capacity, energy-efficiency, security, and resiliency

Intelligent Sensing to Action

- Analog & Mixed Signal Systems
- Sensor Fusion, Processing, and Interpretation

Systems & Architectures for Distributed Compute

- Distributed = Heterogeneous, Edge, Cloud
- Energy Efficient Compute
- Accelerators & Accelerator Fabric

Intelligent Memory & Storage

- Full-stack optimization of Intelligent Memory systems
- Emerging memory devices & arrays, including enhanced functionalities

Advanced Monolithic and Heterogenous Integration

- Interconnect Fabrics including Photonics
- Architectures and Applications for Advanced Packaging

High-performance energy efficient devices for Digital & Analog Applications

• Novel Materials, Devices, & Interconnect technologies

Agenda

- Challenges & CUbiC's Vision
- Research Plan
 - Theme 1: Connectivity Networks and Systems
 - Theme 2: Wireline and Lightwave Interconnects
 - Theme 3: wireless Circuits and Technology
- Integration & System Testbed Platforms
- Summary

Edge to Cloud Connectivity Challenges

Explosive Growth in Data Communication Demands

Cloud Connectivity Challenges:

- Orders of magnitude gap between on-chip/off-chip BW
- Strong distance-dependent communication energy
- Scalability limited by energy and bandwidth tapering
- Massive heterogeneity compute/memory/accelerator

Edge Connectivity Challenges:

- Driving mm-Wave capacity to meet data demand with robustness, reliability, mobility, and low cost
- Massive densification, power, loss, thermal cooling
- Long-range links back-haul, long range front-haul, airborne links limited by output power

System Connectivity Challenges:

- Seamless connectivity between edge and cloud for optimized cross-layer performance
- Reconfigurable, adaptable connectivity to accelerate heterogeneous applications
- Secure and resilient connectivity across edge and cloud

AI Applications Driving Ever Larger Models in Cloud

Cloud Performance Scaling with Reduced Energy

CUbiC enables:

- <u>Scale Performance</u> while
- reducing energy by > 100 X
- Flattened BW/energy across the system by bringing photonics into the socket
- System wide flexible photonic connectivity for accelerating AI/ML/HPC applications

Wireless Edge: Challenges Moving to Higher Frequencies

- High Frequency Millimeter-W ave W ir eless:
 - More available spectrum; Higher data rates per beam
 - Massive spatial multiplexing; Compact arrays

- Key Deployment Challenges even at 5G
 - High atmospheric and λ^2/R^2 losses; limited range
 - Massive densification required to provide coverage
 - Closely-spaced base stations; high deployment cost
 - Extending range requires arrays with many (10²-10³) elements
 - Dense $\lambda/2$ array pitch; higher power per element; high cost
 - Thermal cooling limits practical antenna count and footprint
 - Long range applications limited by output power (CMOS/SiGe cannot offer watt level power efficiently) need GaN / III-V

Road to the Next-G Wireless Connectivity

- Accelerate Adoption:
 - Increase 5G systems capacity; all-digital massive MIMO both 28 GHz and 100+ GHz
 - Advanced efficient DSP algorithms for multi-user MIMO
 - Cost-effective densification via O-RAN (low-cost remote radio heads and backhaul)
- Longer Range, High Capacity, with Low DC Power, and Low Cost:
 - Massive 2-D arrays with advanced semiconductors and high-density packaging
 - Large-scale, <u>inexpensive CMOS</u>mm-wave arrays
 - Smaller active arrays plus massive steerable passive retroreflectors
- Highly Flexible, High Spectral Efficiency, Robust Systems:
 - Favorable to O-RAN distributed architectures; routing massive data efficiently
 - Systems inherently robust to interference in the RF/analog domain; not relying on digital baseband
- High Frequency GaN Devices: high output power, thermal cooling, favorable to wireless applications

Flatten the computation-communication gap at both the Edge and the Cloud to deliver seamless Edge-to-Cloud connectivity with transformational reductions in the global system energy consumption.

Grand Challenge:

Realize robust, scalable Edge to Cloud connectivity at > 10 Tbps with sub-pJ/bit energy efficiencies while enhancing bandwidth densities by >100X over capacity-constrained channels

CUbiC Team: 23 PIs from 13 Universities

CUbiC Research Plan

Vertically Integrated Research Organization

Theme 1: Addressing System Connectivity Challenges

Theme 1: Task Organization

1.1 Terabits/s PHY Systems

Task 1.1.1: Flexible Photonic Accelerated Computing (FlexPAC) <u>Bergman</u>, Ghobadi, Lipson

Task 1.1.2: Signal Processing Architectures for Terabit/s Scaling (SPATS) <u>Madhow</u>, T. Chen, Zhang

Task 1.1.3: Millimeter Wave Networking at Extreme Mobility and Range (MiNxMoR) <u>Madhow</u>, Ghasempour, Krishnaswami, Rodwell

1.2 Cross-layer Design of Terabit/s Networks 1.3 Security and Resilience

Task 1.2.2: Cross-Layer Resource Allocation for Terabit vRANs (CLaRA) T. Chen, Madhow, GhasempourTask 1.2.3: User Tracking and Propagation Mapping for Seamless Connectivity (UTraP) Ghasempour, Madhow, T. Chen	Task 1.3.1 : Lightweight Forward Error Correction (LiteFEC) <u>Mahdavifar</u> , Zhang, Shanbhag
	Task 1.3.2: Coding for Authenticated SecurConnectivity (CASeC)Mahdavifar, Ghasempour
	Task 1.3.3 : Secure Cross-layer Network Architectures (SeCNA)

1.4 Platforms/Testbeds

Task 1.4.1: Socket-to-Socket Distributed AI/ML/HPC Fabric Platform (SoSFab) <u>Ghobadi</u>, <u>Stojanovic</u>, Bergman, Wu Task 1.4.2: CUbiC Real-time Antenna-to-Compute Testbed (ReACT) *T. Chen*, *Krishnaswamy*, Niknejad, Ghasempour

Theme 2: Addressing Connectivity Challenges Within the Cloud

 Application-level efficiency and performance limited by huge compute vs. comm. gap in BW (10²X) and energy efficiency (10³X)

< 5" to ASIC

17.1"

sestered aufeter ebrecher freeter

Theme 2: Bringing Photonics to the Socket

Adapted from Gordon Keeler, DARPA

Theme 2: Wireline and Lightwave Interconnects

pervasive system-wide socket-to-socket photonics-based connectivity

Theme 2: Task Organization

2.1 Systems & Algorithms for Connectivity 2.2 Circuits & Architectures for Links 2.3 Circuits & Architectures for Switches

Task 2.1.1: Algorithms for Energy-efficient Connectivity (ALEC) Shanbhag, Hanumolu, Madhow

Task 2.1.2: Programmable Energy-efficient DSP Architectures (PENDA) Shanbhag, Hanumolu, Zhang

Task 2.1.3: Adaptive Low-Cost High-Speed ADC (ALoHA) M. Chen, Niknejad, Shanbhag, Hanumolu

Task 2.2.1: SuperFabric IO Stojanovic, Wu, Ghobadi, Hanumolu

Task 2.2.2: Coherent Optics in the Data Center (CODAC) Hanumolu, Shanbhag, Bowers, Stojanovic

Task 2.2.3: Integrated Massively Parallel Electrical Links (IMPEL) Hanumolu, Shanbhag, Bergman, Bowers

Task 2.2.4: Machine Learning-inspired High-Speed Links (MachSpeed) Anand. Mahdavifar

2.4 Photonic Devices for Connectivity

Task 2.3.1: SuperSwitch - A high-radix silicon photonic switch Wu, Stojanovic, Ghobadi

Task 2.3.2: SuperSwitch Controller – A controller for SuperSwitch Stojanovic, Wu, Ghobadi

Task 2.3.3: Optical Packaging of SuperSwitch and SuperSwitch Controller Wu, Stojanovic, Bergman, Ghobadi

Task 2.4.1: Fiber-In-The-Socket (FITS) Bowers, Bergman, Stojanovic

Task 2.4.2: High-bandwidth Mode Coupling (HaMoC) *Lipson*, Bergman

Task 2.4.3: Photonic Resonators for Ultra High-Bandwidth and Efficiency (PRUnE) *Lipson*, Krishnaswamy

Theme 3: Wireless Circuits and Technology

Theme 3: Task Organization

Task 3.4.1: Devices Incorporating Ensemble Velocity Overshoot (EVO) *Mishra*, Ahmadi, Chowdhury, Rodwell **Task 3.4.2**: N-polar GaN Growth on Bulk GaN (GoG) *Ahmadi*, Mishra, Chowdhury, Niknejad Task 3.4.3: High-K and Ferroelectric Dielectrics (HfZrO and in-situ ScAIN) (HiFi) *Ahmadi*, Mishra, Chowdhury, Rodwell

Task 3.4.4: Diamond-based Thermal Management for GaN and InP (D-Therm) *Chowdhury*, Mishra, Ahmadi

CUbiC Integration & System Testbed Platforms

CUbiC System Connectivity Platform 1: SoSFab: Distributed AI/ML/HPC Fabric

- Vision: A system-wide energy-efficient demonstration of CUbiC data center platform
- Approach: Co-optimize and co-design from applications to devices to exploit synergies across the system stack, application requirements, and device capabilities.
- Outcome: End-to-end application demonstration CUbiC's ubiquitous connectivity that scales to meet the needs of emerging distributed data-centric applications, such as machine learning training and inference.

- Only known platform that enables adjusting the network topology, communication collective, parallelization strategy, and workload scheduling for AI/ML/HPC workloads.
- Potential for cooperation with the JUMP2.0 ACE Center (UIUC)

SoSFab: Distributed AI/ML/HPC Fabric

CUbiC System Connectivity Platform 2: ReACT: Realtime Antenna to Compute

- Vision: a center-wide demonstrations of wireless connectivity from antenna to compute
- Approach: translation from advanced mm-W ave ICs developed in CUbiC labs to a programmable radio platform, O-RAN for system-level evaluation and network-level experimentation.
- Outcome: center-wide demonstrations that will take a holistic system approach to integrate the unique mm-W ave frontend and digital circuits, and provide the evaluation of the advanced algorithms and control plane robust, secure

Connectivity Platform 2 – ReACT: Realtime Antenna to Compute

Cross-Center Collaboration

Jump 2.0 Centers	Topics of Interactions
Cognition COCOSYS (GaTech)	 Data movement and communication challenges in next-Gen AI systems Naresh Shanbhag
Communications and Connectivity CUbiC (Columbia)	
Intelligent Sensing to Action CogniSense (GaTech)	 Analog and mixed signal; massive array technology Al Molnar
Systems & Architectures for distributed Compute ACE (UIUC)	 Photonic interconnection networks in distributed computing architectures; SoSFab testbed Manya Ghobadi and Zhengya Zhang
Intelligent Memory and Storage PRISM (UCSD)	 High bandwidth photonic connectivity to memory; deeply disaggregated connectivity architectures
Advanced Monolithic and Heterogeneous Integration CHIME (Penn State)	 Advanced heterogeneous assembly and packaging; initiated joint effort on models (Shanbhag/Hanumolu) Michal Lipson
High-Performance Energy-Efficient Devices for Digital and Analog Applications SUPREME (Cornell)	Advanced materials and GaN devices for wireless

- CUbiC will strive to flatten the computation-communication gap, delivering seamless Edge-to-Cloud connectivity with transformational reductions in the global system energy consumption.
- Vertically integrated research agenda cross-cutting 3 technical themes
- Outstanding team of 23 Pls from 13 Universities
- 37 Research Tasks
- Expected: >85 graduate students per year
- June 27-28 CUbiC Annual Review

CUbiC's Integrated Team

Building on ComSenTer Groundbreaking Outcomes

- Validation of core mmW ave technology
 - 100+ GHz doable in CMOS, CMOS+ III/V for increased range
 - RF and Fully digital beamforming for massive antenna arrays
 - 140 GHz Hub demo; Beamspace ICs

MIMO Hub Digital Beamformer ICs