Compute-in-Memory and AI Accelerator Technologies for the Sub-18Å Era

SRC Industry Talk, August 2023 Ram K. Krishnamurthy High Performance and Low Voltage Circuits Research Circuits Research Lab, Intel Labs Intel Corporation, Hillsboro, OR 97124, USA ram.krishnamurthy@intel.com

Internet of Everything (IoE)

Need end-to-end energy efficiency, ML everywhere

DATA DEFINES THE FUTURE

WMIT Other names and brands may be claimed as the property of others.

The Future Begins Here

Compute and Memory Challenges for Al

- Compute demand growth rate: Doubling every 3-4 months
- Memory capacity growth rate: 10X per year

AI Has Moved to the Edge

Edge Devices

Cloud Computing

Source: L. LOH, isscc 2020

чк Л К

Diversified Workload & Increasing Demands

0.1 TOPS	1 TOPS	10 TOPS	100 TOPS		
1 TOPS/W	3 TOPS/W	10 TOPS/W	30 TOPS/W		
Vision Perception	Vision Construction	Visual Quality	Multi-Streaming		

**

Intel Process Technology

Moore's Law continues

when combining the power of processing and packaging innovation

Go Wider: Within Package Interconnect Scaling

Power Efficiency

Normalized Energy

Source: facebook

Memory Bottleneck

 Performance gap between processor and memory

Von Neumann Bottleneck

- Huge energy consumption of memory
- Reduce data movement between processor and memory
- Computation-in-Memory (CiM)

Operation	Energy [pJ]	Relative Cost		
32 bit int ADD	0.1			
32 bit float ADD	0.9	9		
32 bit Register File	1	10		
32 bit int MULT	3.1	31		
32 bit float MULT	3.7	37		
32 bit SRAM Cache	5	50		
32 bit DRAM Memory	640	6400		

Source: Song Han et al. "EIE: efficient inference engine on compressed deep neural network," ISCA 2016.

SC2-6: Alternate Technologies for SRAM, Hai Li, Duke University, *IEDM*, 2020. Source: K. Takeuchi, IRPS 2023

38

Compute-in-Memory Motivation

- Data movement is costly
- Multiply-accumulate (MAC) operation
- Massively parallel processing
- Beyond von Neumann architecture

Compute-in-Memory Challenges

• TOPS/W versus Precision

Intel Labs Analog CIM Architecture Overview

Intel Labs Analog CIM Measured Performance

- Energy efficiency: 15.5-32.2 TOPS/W
- Area efficiency: 2.4-4.0 TOPS/mm²
- Clock frequency: 145-240 MHz
- Supply Voltage: 0.7-1.1 V

Opportunities for in-memory/near-memory Process and Circuit Innovation (Both Digital and Analog/Mixed-Signal)

COMPUTE NEAR MEMORY CHALLENGES AND OPPORTUNITIES

E. Sumbul, R. Krishnamurthy et al, IEEE ESSCIRC 2021

10nm Near Memory Computing AI Inference Accelerator

- 4 CNM cores with 8KB of weight memory and 64 8b multipliers
- Supports memory-intensive batch-1, large-batch, and in-place convolution

10nm Near Memory Computing Measurement Results

- Peak throughput 170 8b TOPS @ 0.9V that scaled up with number of CNM cores
- NTV operation down to 450mV decreases energy by 3.1x to 2.9 8b TOPS/W
- Variable precision improves energy efficiency by 11.4x to 33.0 1b TOPS/W
- G. Chen, R. Krishnamurthy et al, IEEE European Solid-State Circuits Conference 2021

10nm Binary Neural Network Inference Accelerator

- Array of 128 Memory Execution Units (MEU) combine latch base memory and inner product compute in fine grain manner to minimize interconnect energy
- Central controller manages data flow from four 256b memory banks to MEUs
- 2 latch words per MEU enables data reuse reducing input bandwidth by 2x

Comparison to Previously Published BNNs

P. Knag, R. Krishnamurthy et al, IEEE Journal of Solid-State Circuits Invited Paper, April 2021

Compute Near Last Level Cache (CNC)

- CNC enables fine grain mixing of near-memory vector and GP scalar computation
- High BW access to highest capacity on-chip memory instead of RF/scratchpad

Compute Near Last Level Cache of RISC-V Multiprocessor

- 8-core RV64GC processor with 128 INT8 MACs near 512kB shared, distributed LLC
- CNC ISA extension with support for virtual addressing and cache coherence

G. Chen, R. Krishnamurthy et al, IEEE VLSI Circuits Symposium 2022 & JSSC Journal Invited Paper April 2023

Intel 4 Silicon Implementation of 8-Core RISC-V

- 1.15GHz Intel 4 test-chip runs programs in C++ with inline CNC and boots Linux
- CNC circuits add 1.4% area overhead over baseline core + LLC design
- Flip-chip packaged with PLL and 32b IO to FPGA chipset

8-Core RISC-V DNN Layer Performance in Intel 4

- Fully Connected Layers: up to 46× higher performance and 52× lower energy
- Convolutional Layers: up to 27× higher performance and 29× lower energy

G. Chen, R. Krishnamurthy et al, IEEE VLSI Circuits Symposium 2022 & JSSC Journal Invited Paper April 2023

Domain-Specific Computation Enables Workload Optimization which Drives Performance and Efficiency

Tailor architecture by application

 Adapt algorithms to use lower precision math formats for significant improvements in energy efficiency

Intel Advanced Matrix Extensions (Intel AMX)

Tiled Matrix Multiplication Accelerator

TILES – Data Structure

- New expandable 2D register file 8 new registers, 1Kb each
- Supports basic data operators: load/store, clear, set to constant, etc.
- TILES declares state and is OSmanaged by XSAVE architecture

TMUL – Accelerator Operations

- Set of matrix multiplication instructions, first operators on TILES resgister files
- A MAC computation grid calculates "tiles" of data
- TMUL performs Matrix ADD-MULTIPLY (C=+A*B) using three Tile register (T2=+T1*T0)
- TMUL requires TILE to be present

Multi-precision Neural Networks Matrix Multipliers

a00	a01	a02	a03		b00	b01	b02	b03		y00	y01	y02	y03
a10	a11	a12	a13	\checkmark	b10	b11	b12	b13		y10	y11	y12	y13
a20	a21	a22	a23	\wedge	b20	b21	b22	b23		y20	y21	y22	y23
a30	a31	a32	a33		b30	b31	b32	b33		y30	y31	y32	y33

Simple Neural Network

- Matrix-multiply: power, performance, and area limiter
- Large matrices with many iterations
- Specialized architectures enable higher performance and energy efficiency
- Varying numeric requirements (FP16/INT16/INT8) across applications
 - Require low overhead reconfigurable circuits
- Varying matrix sparsity across applications
 - Optimized circuits can take advantage of sparsity

Variable Precision Matrix Multiply Accelerator

- 4x4 systolic array
- Fabric reconfigures to optimize data movement in dense/sparse mode
- Reconfigurable MAC with signed/unsigned INT16/4xINT8/FP16 support

M. Anders, R. Krishnamurthy et al, VLSI Circuits Symposium 2018

14nm Chip Micrograph and Nominal Performance

Mult/Acc Mode	Nominal (750mV, 25°C)				
FP16/FP32	800MHz, 42.7mW, 0.6TFLOPS/W				
INT16/INT48	940MHz, 37.6mW, 0.8TOPS/W				
INT8/INT24	1.06GHz, 47.7mW, 2.9TOPS/W				

Matrix Multiplier Energy Efficiency Measurements

- Efficiency increases 4X from nominal 750mV to near threshold voltage
- Peak energy efficiency range from 2.97TFLOPS/W (FP16) to 11.3TOPS/W (INT8)

The Future – Zetta Flop Systems

Roadmap to Lower Voltage Operation

Low voltage operation requires careful selection and optimization of storage elements

Memory Challenges in AI Accelerators

- AI accelerators are built using a large array of processing elements (PEs) containing small capacity local register files (RFs)
- Register files contribute a significant amount of power (39%) and area (35%) within the PEs

Static AI Register File Micrograph

S. Hsu, R. Krishnamurthy et al, IEEE VLSI Circuits Symposium 2022

Ultra-low voltage operation at 325mV, 100°C consuming 36.7μW, 60MHz

"Extreme" efficiency research

System-Wide Breakthroughs Needed Across the Board

intelligence Inside