Center for Heterogeneous Integration of Micro Electronic Systems SAB Review - Center Plan of Action for 2024

Madhavan Swaminathan (Penn State), Center Director Muhannad Bakir (Georgia Tech), Assistant Director

The CHIMES Team (23 Pls & 15 Univ)

Meet our Students....Team of 88

Change in Management

Rohit Sharma

Managing Director, CHIMES Last date Apr. 30, 2024 Returned to India Associate Prof. IIT Ropar Saber Soltani

Velcome

Operations Director, CHIMES Start date date Apr. 22, 2024 Ph.D. HKUST 2016

Outline

- □ CHIMES A Summary
 - **Our Vision**
 - Themes-Roadmaps-Technical Approach
 - Research output 2023
- Plans for 2024
 - Realignment of Task ID 3136.017
 - Rapid Prototype Vehicle (RPV)
 - Inter Center and Sponsor Collaborations
 - **Student Council**
 - **Expanding the CHIMES National & Global footprint**

ous Integration

Year 2 Goals & Status

G Summary

Economics & Continuation of Moore's Law

Three reasons why Advanced Packaging is becoming critical for the continuation of Moore's Law:

- Higher yield using smaller dies in advanced nodes.
- 2. Shorter time to design with smaller dies from optimized legacy technology nodes with enhanced functionality.

Initiate of technology Stanford UC San Diego RICE UNIVERSITY US ILLINOIS CHICAGO

University of Colorado Boulder

3. Move towards **HETEROGENEOUS INTEGRATION**. PennState Georgia UCLA COLUMBIA UNIVERSITY COM Cornell University Arizona State

for Heterogeneous Integration

of Micro Electronic Systems

SRC

Packaging: Past, Present, and Future

Packaging (Past)

for Heterogeneous Integration

of Micro Electronic Systems

Advanced Packaging (Present)

Massachusetts Institute of technology

Heterogeneous Integration (Future)

University of Colorado Boulder

□ Present: FEOL Transistor, BEOL Wiring & Package individually developed and combined

Future (CHIMES Vision): New and transformative logic, memory, and interconnect technologies that overcome the inevitable slowdown of traditional dimensional scaling of CMOS by interconnecting a diversity of transistors and integrated circuit components, blurring the line between what is on-chip and what is off-chip.
 CHIMES

CHIMES – A Snapshot

Our vision driven by Emerging Applications

Roadmap used to drive Research based on Targets

G Four Themes

Team

- 23 Pls from 15 Univs
- 88 Students (includes post docs)
- 24 Research Tasks
- 160+ Industry Liaisons

Ultra-dense Heterogeneous Interconnect & Assembly (Theme III)

	1&7 IC PARALLE (BAKIR, IYE	ELISM ICS FOR HI INTEGRATION	5	RECONFIGURABLE CIRCUITS & AI	ı	Metric & Drivers	Metric (10 Years)	State of the Art (SOTA)
	Blurred on Metallic Fire	-chip vs. off-chip connectivity ne pitch wires & in-fill dielectrics		ACCELERATORS (SORGER) Fourier-Theorem Convolution One	s!	Electrical IC	IO density 16M/mm ²	IO density 10K/mm ²
	• 100nm fine • Massive m	e-pitch chiplets alignment nemory access of DRAM and PIMs	Heat Sink - Strata 1 Die 1 Strata 2 Die 1 Strata 3 Die 1	 ps MAC Ops Zero-power Multiplication Algorithm-hardware Co-Design Co-packaged laser 		Parallelism & Volume Scaling (AI, DC, M)	BW Density > 500Tbps/mm ² ; <0.01 pJ/bit	BW density 28Tbps/mm ² ; 0.021 pJ/bit (ARM/GT IEDM 2020)
4 PH IN	IOTONIC/OPTIC TER/INTRA ICS (YOO)	M3D THEME II	Electronic Photonic Las	ic Laser	RF/MM-WAVE (SWAMINATHAN)	Cooling & Power	Power 1000W; Current density 2–5A/mm ² ; Efficiency >80% (HIR 10 year)	Power 400W; Current Density 1A/mm2; Efficiency <70%
	Adiabatic coupling M3D Connectivity	Passive Light Gain Integration Delivery + Controllers	Barry	Antenna ULK Dielectric	RF-Electronic integration Massive 2D Arrays IoT-relevant THz freq	Delivery (S, C, H, AI)	Current 50 KAmps; Power 50kW; PDN Power <1KW (2%); Efficiency>80%	Current 18 KAmps; Power 10KW; PDN 5KW (33%); η <67% (Tesla Dojo)
6	ACTIVE & PASSIVE DEVICES FOR	ASSIVE R INCLUS	Embed			Wireless IC & I/O	Insertion Loss <1dB (PA output to Antenna input) @ 0.3 – 1THz; DARPA ELGAR 1dB	Insertion Loss >5dB in D-Band (110- 170 GHz) (ComSenTer)
H IN	INTEGRATION (LIPSON)				(KUMAR, JOSHI)	(C, S, H)	Antenna efficiency >90% @ 0.3–1THz	Antenna efficiency >90% (< 100GHz)
	Emerging materials for photonic ICs	CORE Micro-cooler	IVR Thermal RF	CMOS InP	In-package cooling High-ratio thermal capacitance materials Emerging heat maggement materials		SNR 30dB (128 QAM)	SNR 20dB (128 QAM) D-Band
	Low-loss Waveguides and WDM filter Passive waveguides with		Thermal Interfa	ece Material Heat Spreader			Coupling loss < 0.9dB; Misalignment; +/-1mm	Coupling Loss ~ 1dB (O-Band)
i	integrated EO modulators	-		a starter	I	Photonic/Optic IC	100 (Tbps/mm)/(pJ/bit) (link-level)	1 (Tbps/mm)/(pJ/bit) (DARPA PIPES)
	l	2 PO (SV • Ef	WER DELIVERY & THERMAL MANAGE VAMINATHAN) fficient vertical delivery. • Embedded IV	MENT R & inductors		and Chiplet Communication	Bandwidth (BW) Reconfigurable ICs between chiplets; 0.5-5Tbps aggregated BW	NA
Wafer Sc	Reconstituted Heterogeneou Scale Bonding with (Analog. mmW	Reconstituted BEOL Heterogeneous Wafer BEOL (Analog, mmWave, I/Os, (Analog, mmWave, I/Os etc.) BEOL		1 1 1 1 1 1 1 1 1 1 1 1 1 1		(AI, C, DC)	Optical gain/laser integration via photonic wire bonds (PWB) and/or mono-int. (DARPA LUMOS)	Laser is off-chip → requiring packaging (costly & not reliable)
R Hete	econstituted rogeneous Wafer	смоз	Monolithic 3D IC	FEOL STRUCTURE GAN BEOL T	Andread An	Reconfigurable Circuits & Modules (AI, S, DC)	100 TOP/J, 1ns latency, infinite bit-resolution MAC ops (DOD Labs e.g., AFRL, ARL)	<5 TOP/J, 1000+ns latency, 4-12 bit
	CMOS Mone with Logic & Main Beam	with Li Dithic 3D IC Memory	BEOL BEOL FEOL Interposer	Tier 1			AI accelerator: 10–100 fJ/MAC, 1–50 TMACs/mm ² , 1ns–25 ps operation (Google X)	0.5–1 pJ/MAC, 0.5–1 TMAC/s/mm ² , 0.5–1 GMVM/s, and 1–2 us per MVM
	لا م	50- 8-	≩ ↑		thin-film capacitor contacts	Active & Passive Devices for Heterogeneous Integration (C, S, DC)	EO Modulator: ER > 12dB; BW > 15GHz per channel; (next Gen AIM Photonics components)	NA
Side L	obes	gap = 10 μm WG Width = 1.934 μm	10 um	SiN			Interposer Waveguides; losses < 0.1dB/cm	1.5dB/cm
	Attention of the second s	Via Width = 1.7 / 7 µm 4 d= 0.33 µm e Anay Anayler Anay a Jinda Manual oli You Ama Si You Ama Disa Anay Loss = 1.42	1.42 dB	Angeneration and the second se			Interposer Filters for WDM: filter sharpness > 15dB over < 0.2nm BW (AIM Photonics Foundry)	NA
			MES	PennState	Georgia Tech	CLA COLUMBIA UN IN THE CITY OF NEW Y	Cornell University	a State UCDAVIS sity UNIVERSITY OF CALIFORNIA
		Center for of Micro El	Heterogeneous Integra ectronic Systems	tion Massachusetts Institute of Technology	Stanford UC Sa	an Diego 😵 RICE UN		ersity of Colorado Boulder 9

Monolithic 3D (M3D) Densification and Diversification on Silicon **Platform (Theme II)**

University

Materials Behavior, Synthesis, Metrology, And Reliability (Theme IV)

Metrics & Drivers	Metrics (10 Years)	State of the Art (SOTA)
Ultra-low K Dielectrics AI, C, DC, M)	Permittivity < 2.5, Loss 0.01 @ 1THz, Thickness: 1μm – 100μm, CTE: <30 ppm/C	Permittivity 3.0, Loss 0.05 @ 150GHz, Thickness: 5mm, CTE: 30-40 ppm/C
Interconnects (Al,	For BEOL Devices: 100nm pitch, 50nm dia., aspect ratio 2-10 for 2-5 tiers for via bottom-up fill.	400nm pitch, 200nm dia., aspect ratio up to 5 (selective ALD for Co from ASCENT)
DC, M)	TSVs: 100 nm diameter, 250 nm pitch; aspect ratios >30:1	9 μm pitch and ~2μm diameter [AMD 3D V-cache]
	Misalignment-tolerant bonding process for inter- layer interconnects at 250 nm pitch	5.5 μm pitch using face-to-face hybrid bonding [ARM/GF]
	TIM: 200W/m-K; Thickness <30μm; CTE 20 ppm/C	TIM: 25-100 W/m-K; CTE 55-200 ppm/C
Thermal (Al, C, S, DC, H)	Heat Spreader: - cBN 200 W/mK at 100 nm thick, 500W/mK at 1 μ m - Diamond 400 W/mK at 1 μ m, 1500 W/mK at 10 μ m, 2000 W/mK at 50 μ m.	Heat Spreader: Cu 400 W/mK bulk
	Ultra-low interface thermal resistance, e.g. GaN/diamond 3 m ² K/GW, Si/diamond 3 m ² K/GW	GaN/diamond 6.5 m ² K/GW Si/diamond 9.5 m ² K/GW
	Thermal isolation materials: 0.02 W/m-K, dielectric constant < 1.5, thermally stable above 300°C	Thermal isolation materials (SiCOH): 0.6 W/m-K, dielectric constant 1.8- 2.5, and thermally stable above 300°C
	Į	I
		State Gr Georgia UCLA COLUM
SR	Center for Heterogeneous Integration of Micro Electronic Systems	usetts 🚱 Stanford UC San Diego 🐼 R

University

....

System Driven Functional Integration & Aggregation (Theme I)

PennState Gr Georgia UCLA COLUMBIA UNIVERSITY

Metrics & Drivers	Metrics (10 Years)	State of the Art (SOTA)
Benchmarking (AI, C, S, DC, M, H)	Automated cross-layer pathfinding framework with Power, Performance, Form-factor, Cost and Reliability (PPFCR) prediction for full systems + applications.	Pathfinding limited to technology or technology + circuit only; limited automation.
Co-Design (Al, C, S, DC, M, H)	Physical design tools for M3D chiplets integrated on systems spanning > 20,000mm ²	No tools for M3D; interposer tools limited to ~2000mm ²
Power Deliverv	Power 1000W; Current density 2-5A/mm ² ; Efficiency >80% (HIR 10 year)	Power 400W; Current density 1A/mm ² ; Efficiency <70%
(AI, DC, H)	Current 50 kAmps; Power 50kW; PDN Power <1kW (2%); Efficiency>80%	Current 18 kAmps; Power 10kW; PDN 5kW (33%); Efficiency <67% (Tesla Dojo)
	Chiplet: Background heat flux (entire die) 2kW/cm ² ; hot spot heat flux (0.1mm x 0.1mm) 30kW/cm ² ; Vol. removal 2kW/cm ² mm; Thermal time constant 1µs	Background heat flux (entire die) 200W/cm ² ; hot spot heat flux (1mm x 1mm) 1kW/cm ² ; Vol. removal 200W/cm ² mm; Thermal time constant 20µs
Thermal (AI, C, DC, H)	Stack: Thermal isolation ratio 0.95; TIM specific resistance 0.3 mm ² K/W for 30 μ m; k 200 W/mK, elastic modulus 30 MPa	Thermal isolation ratio 0.5; TIM specific resistance 1 mm ² K/W (DARPA NTI)
	Interposer: Heat spreader effective k 10,000 W/mK; Heat spreader thickness 0.2mm	Heat spr. effective k 4000 W/mK; Heat spreader thickness 2mm (DARPA TGP)
	<u>Server (1U)</u> : Volumetric R _{th} 0.015 °Ccm ³ /W	Volumetric R _{th} 0.03 °Ccm ³ /W
Electrical/Optical Test (AI, DC)	Fault coverage >99% (Short/Open) & >95% (device/components)	<95% coverage (Short/Open), devices/components (no test or BIST)
<i>、,,</i>	10X reduction in test cost (Package BIST)	(Relative) test cost growing
	Probability of trojan evasion >99%	No universal security metrics available
Hardware	Probability of reverse engineering <1%	No universal security metrics available
Security	Split manufacturing based on fine pitch HI	Not available

CHIMES

of Micro Electronic Systems

Center for Heterogeneous Integration

SRC

Theme III: Ultra Dense Heterogeneous Interconnect and Assembly

UNIVERSITY OF CALIFORNIA

12

UF FLORIDA

Research Output 2023

- Papers: 89
- Invited & Keynotes talks: 84
- Awards: 24
- Software releases: 3

Major PI Awards & Recognitions

IEEE VLSI 2023 SPIE Technology Maria and Circuits' Goeppert-Test of Time Mayer Award Award and **IEEE Fellow IEEE Andrew** S. Grove Award

Award

NSF CAREER 2024 IEEE Rao R. Tummala Electronics Packaging Award 2023 NAI Fellow

Center for Heterogeneous Integration

of Micro Electronic Systems

IEEE Fellow & Johnson Intel WiSTEM2D Outstanding Award Researcher 2023 Moore Award Inventor Promoted to Fellow Professor

Massachuset Institute of Technology

2023 Johnson NSF CAREER DARPA Young Director, NAPMP -Award Faculty Award **CHIPS Act** 2023 APL **Rising Star**

PennState Gr Georgia UCLA COLUMBIA UNIVERSITY CON Cornell University Arizona State University University

Director, CTO, SWAP Clarence J. LeBel Chair HUB @ ASU PRC in Electrical DoD Microelectro Engineering nics and Commons Computer Science

Stanford UC San Diego RICE UNIVERSITY US ILLINOIS CHICAGO

13

UF

Center Plans for 2024

Realignment of Task ID: 3136.017

Acting PI: Puneet Gupta and Madhavan Swaminathan (Technical Direction)

Objective: Scale down vertical interconnect pitch in 3DHI to sub µm level using lithographically aligned methods

- High-quality 3D strata stacking technology was recently developed
- On-shelf 4-inch GaN on Si wafers are available for the demonstration of the proposed method
- Hydrogen exfoliation is not needed in phase 1 (solely for generating the thin GaN strata)
- Will apply Hydrogen exfoliation method in phase 2 on other III-V materials that can not be easily grown into large-size

Subu S. Iver 2 Year Leave of absence to serve as Director, NAPMP

- The heterogeneous power delivery platform is a good prototype to demonstrate the proposed approach
- The heterogeneous power delivery structure using lithographically defined vertical connections and finepitch bonding connections features:
- Small PDN impedance: micron-level distance
- Vias are massively fabricated on the same wafer by lithography
- High vertical interconnection density

Georgia UCLA COLUMBIA UNIVERSITY

15

Rapid Prototype Vehicle (RPV)

- Bulk Material or Component properties need to be achieved.
- However, it is the interfaces and integration that are the challenge in Heterogeneous Integration.
- Purpose of RPV is to evaluate new technologies early in the cycle and only pursue ones that are promising.
- Enables natural collaboration between tasks and centers!

Electronic Systems

Task Collaborations through Rapid Prototype Vehicle (RPV)

Specific Collaboration with other JUMP Centers

ALE for Hybrid Bonding Steve George (SUPREME) & Andrew Kummel (CHIMES)

Photonics Heterogeneous Integration in a Datacom Link Keren Bergman (CUBIC) & Michal Lipson (CHIMES)

Advanced Packaging for Communications Mark Rodwell (CUBIC) & Madhavan Swaminathan (CHIMES)

3D In-Sensor Computing Yu Cao (CoCoSys) & Muhannad Bakir (CHIMES)

Design and Analysis of UCIe Interface for Reconstituted Chiplet Technology Elyse Rosenbaum & Nam Sung Kim (PRISM) & Muhannad Bakir (CHIMES)

layers, 2 ground layers

18

Specific Collaboration with other JUMP Centers (cont.)

PRISM (P. Wong) & CHIMES (P. Wong) (Hybrid Gain Cell)

CHIMES: Hybrid gain cell tape-out

SUPREME (V. Sorger) & CHIMES (T. Palacios) (Photonic SiN WG w/ TMDC)

SRC

ACE (J. Torrellas, T. Krishna) & CHIMES (P. Gupta) (Wafer Scale Networks)

UF

Collaborations with Sponsors (In Progress) Opportunities for Tech Transfer

Tomás Palacios	Working with IBM to develop stealth dicing and advanced packaging capabilities to build 3DIC solutions for W-Band				
	Working with Raytheon to develop a lab-to-fab 200 mm GaN MMIC process for G-Band				
Volker Sorger	Engaging with Intel on photonic interconnects in glass substrates.				
	GlobalFoundries' UPP program co-developing Fourier-based convolution neural network ASICs				
Philip Wong	Collaborating with TSMC to heterogeneously integrate oxide semiconductor high density gain cell memory on Si CMOS logic platform (CMOS+X)				
Shimeng Yu	Working with TSMC on device modeling and applications of back-end-of-line oxide semiconductor transistors				
Andrew Kummel	High speed sputtering technique should get traction from Intel and TSMC				
Zhiting Tian	Working with EMD to validate the thermal conductivity of the new TIM she is developing				
Madhavan	Working with EMD on Liquid Crystals for mmWave				
Swaminathan	Working with Intel and Qorvo on glass substrates				

Broadening Participation (BP)

Victor Wang Ramin Ale UCSD Rahimzadeh Gr Khorasani, PSU

Alexander Zhiting Tian, Graening, UCLA Cornell, BP SU Champion Shuhan Liu, Sriharini Stanford Krishnak UIUC

Sriharini Shriddha Krishnakumar, Chaitanya, UIUC Columbia Myriam Bouzidi GT - President

- CHIMES Pledge (<u>https://www.chimes.psu.edu/broadening-participation.aspx</u>)
- □ Flipped Panel at 2023 Annual Review "Ask the Students"
- □ Student resume book (60 Resumes)
- □ 23 Students invited to participate at the PI Meeting in Chicago June 7, 2024
 - One student per PI selected to participate
 - Get them involved in "Roadmap Discussions". Roadmaps are never static but need to be dynamic and have to evolve with time.
 - Planning for 2024 Annual Review
- □ Aug 5, 2024 (1pm 5pm) Student Networking (1 day prior to Annual Review)

Expanding our Footprint Introducing MASH (Mid-Atlantic Semiconductor Hub)

ogeneous Integration

Electronic Systems

Semiconductor Hub created to respond to **CHIPS Act Funding Opportunities**

- 10 Founding Univs (Total: 20 Univs)
- **180** Companies
- 300 Workforce Development Organizations
- Access to 40 facilities
- University, Industry, Government partnership
- https://mash-semiconductors.org/

CHIMES – CUBIC Partnership

- Leading effort on Semiconductor packaging and **Photonics**
- Responded to recent NOFO on Materials & Substrates (NAPMP)
 - Several sponsors and partner univs on the team
- Part of NGMM (3DHI), DARPA

University UC San Diego 😵 RICE UNIVERSITY 🚥 Illinois chicago

PennState Georgia UCLA COLUMBIA UNIVERSITY COLUMITY COLUMNORS Cornell University

22

CHIMES Receives Gifts for Expansion

- Anonymous Donor: \$4M
 - Name a new semiconductor packaging manufacturing laboratory @ Penn State for CHIMES
- Anonymous Donor: \$1M
 - Support to the Center for Heterogeneous Integration of Micro Electronic Systems ("CHIMES"), or successor center. Expenditures shall be made in accordance with University policy and may include, but are not limited to, facility renovations and improvements, scholarships/awards for graduate and undergraduate students associated with CHIMES, assistantships, research expenses, guest speakers, and/or equipment purchases.

Announcements expected soon

Center Year 2 Goals & Progress

Goal	Status		
1. Better Communication with Industry Liaisons. Increase collaboration with sponsors.	 Each theme meeting every 6 weeks. 1.5 hours - Overview by Theme Leader & 3 Student Presentations. Identified specific sponsor collaborations. Develop methods to expand. 		
2. Develop Rapid Prototype Vehicle (RPV) to foster collaboration between tasks.	 9 Vehicles defined. Need to focus on implementation. Presentation at Annual Review after discussion at PI meeting. 		
3. Increase Inter-center collaboration. <u>Several centers asking</u> <u>for support on packaging</u> .	✓ 5 significant collaborations identified. <u>Requested SRC to</u> <u>help organize a workshop to discuss and strategize on</u> <u>support for packaging</u> .		
4. Broadening Participation – Increase involvement of students in CHIMES to make them future leaders.	 Established Student Council. Involving students in roadmaps. Quarterly Open House with students "Ask the Director". Developing strategy to involve UG Students. 		
5. Expand CHIMES National & Global footprint.	 Leading Semiconductor Packaging Efforts for NAPMP Funding Opportunities. Several keynotes & invited talks. Participating in India Semiconductor Mission (ISM). CHIMES Team Visit to Korea & Taiwan in Oct '24. MoUs. 		
CHIMES PennState Crech. UCLA COLUMBIA UNIVERSITY COLUMBIA UNIVERSITY COLUMBIA UNIVERSITY COLUMBIA UNIVERSITY COLUMBIA UNIVERSITY COLUMBIA UNIVERSITY OF ALLFORNIA			

Center for Heterogeneous Integration of Micro Electronic Systems

Institute of

SKC

Summary

CHIMES continues to CHIME! Positioning ourselves to become the Global Academic Leader in Semiconductor Packaging.

PennState Gr Georgia UCLA COLUMBIA UNIVERSITY

Massachusetts Institute of University University University UC San Diego 🗞 RICE UNIVERSITY 🚥 Illinois chicago

Center Newsletters

2024

2023

Quarter 1

Quarter 1

Quarter 2

Quarter 3 Ouarter 4

It has a wealth of information

University of Colorado Boulder

25

ogeneous Integration

Electronic Systems

See y'all Aug 6-7 for the Next Annual Review (0)

Cornell University

Georgia Tech!

