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Outline

▪Cell Size Scaling Trends

• Importance of Continued Pitch Scaling

▪Materials and Patterning Innovations

• Process variation and Edge Placement Error (EPE)

• Mitigation of Variation through Novel Resists 

• Mitigation of Variations through Directed-Self Assembly

▪Next Gen Materials for Continued Pitch Scaling

▪Conclusions and Outlook 
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3-D Stacking 
Ribbon FET

3-D Stacking + 
2-D Transistors

Graphics for illustrative purposes only and not to scale
Some connections omitted for clarity

Paradigm Shifts in Cell Size Scaling
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Source: Gstrein, 2023 SPIE, 12497-158  
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Paradigm Shifts in Cell Size Scaling

Cell Height
Scaling

Cell Width 
Scaling

Source: 2023 VLSI Papers: W. Hafez and M. Kobrinsky; Gstrein, 2023 SPIE, 12497-158  

Aggressive Pitch Scaling Is Required to Take Advantage of 
New Cell Architectures & Novel Device Materials !! 
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Process Variations → Edge Placement Error

Things that should touch, must. Things that shouldn’t touch, can’t.
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• Stochastics

• Wafer bow/flatness

• Reticle error

• OPC modeling error

• Scribeline vs. device Δ*

• Etch

• Delay sensitivity – CD shifts

• Multipass patterning
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M. Phillips, ASML Tech Conf. 2013
Gstrein, 2023 SPIE, 12497-158 
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Metal and via size variability is driven by photon shot noise & chemical resist noise

via

metal

reliability & metal fill issue

short or reliability issue

Scaling Strategies

Target Structure Variability Risk

metal

via

unlanded viaSource: Gstrein et al., ICPST-39, Invited Paper 2A501, 2022

Source: Gstrein, 2023 SPIE, 12497-158 
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Scaling Strategies

Direct EUV

1- mask

Metallization

SALELE

2- cut mask

spacer

Source: Gurpreet Singh, SPIE2023 12497-29 

1- backbone mask

3- complement
mask

Metallization

Direct EUV SALELE

Advantages Efficient & cost effective • Scalable
• Backbone rectification at 

tight pitch using DSA (DSA-
SALELE @ p18)

Technology 
Requirements

Requires high-NA EUV and 
novel resist materials <p30 

Multiple masks 
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Lower depth of focus (DOF) requires thinner resists

Can resist be etch transferred?

25nm 35nm 

Source: ASML

We print more & smaller features with high NA

Can we manage stochastics?

Low NA

High NA

Pitch Scaling with High-NA EUV
Source: Gstrein et al., ICPST-39, Invited Paper 2A501, 2022
Krysak, Regional Innovation Engine Workshop, Invited talk, 2023

Low NA = 0.33
High NA = 0.55
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Resist Synthesis & 
Formulation

On wafer chemical resist 
characterization

Stochastic Resist Benchmarking

Today: at limit of NXE (0.33 NA) 

Ultimate Resolution Testing

Today: B-MET (0.5 NA)

EUV scanners 

B-MET (0.5 NA)

Step 1

Step 2

Step 3

Step 4

Advanced Resist 
Analytics 

Source: Gstrein et al., ICPST-39, Invited Paper 2A501, 2022
Krysak, Regional Innovation Engine Workshop, Invited talk, 2023
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Direct EUV: CARs vs. Metal Oxide Resists (MOx)

0.5 NA MET Chemically Amplified Resists 0.5 NA MET MOx Resist Platforms

• Insufficient contrast 
• Etch transfer risk
• Pattern collapse

• Excellent resolution
• High etch resistance
• Can be dry developed

0.33 NA scanner Chemically Amplified Resists 0.33 NA scanner MOx Resist Platforms

• High defect levels @ p26 (0.33 NA) • Lower defect levels @ p26 (0.33 NA) at 
lower dose than CARs

• Sensitive to atmosphere exposure

Source: Gstrein et al., ICPST-39, Invited Paper 2A501, 2022
Marie Krysak, RIE Workshop, Invited talk, 2023

26 pitch 26 pitch

Post-etch LER 2.3 nm
Post-etch LER 1.5 nm

Chemically Amplified Resists need attention  
Metal Oxides impress with performance, but are sensitive to air exposure
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A - No Delay
B - Post Exposure Delay

Delay Sensitivity of Metal Oxide Resist Platforms 
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B- Post Exposure Delay

Reactive site

Quenched site

High-NA A/B “reticle swap”

Air exposure can irreversibly quench reactive sites

• More x-link
• Less dose

• Less x-link
• More dose

Source: Gstrein, 2023 SPIE, 12497-158  

Air exposure 
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Scaling Strategies

Direct EUV

1- mask

Metallization

SALELE

2- cut mask

spacer

Source: Gurpreet Singh, SPIE2023 12497-29 

1- backbone mask

3- complement
mask

Metallization

Direct EUV SALELE

Advantages Efficient & cost effective • Scalable
• Backbone rectification at 

tight pitch using DSA (DSA-
SALELE @ p18)

Technology 
Requirements

Requires high-NA EUV and 
novel resist materials <p30 

Multiple masks 
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Metal and via size variability is driven by photon shot noise & chemical resist noise

via

metal

reliability & metal fill issue

short or reliability issue

Scaling Strategies

Target Structure Variability Risk

metal

via

unlanded viaSource: Gstrein et al., ICPST-39, Invited Paper 2A501, 2022
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EUV + DSAEUV

DSA fundamentally improves systematic & random variability

DSA heals defects smaller than the pitch 

Source: Han et al., 2020 SPIE, 11326-25

DSA Line/Space Rectification

Anneal

Resist bridge 
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Fundamentals of DSA Rectification

Edges are defined by thermodynamics 
Not by lithography
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Fundamentals of DSA Rectification

Monodisperse BCP
(PDI < 1.005) 

Polydisperse BCP 
(PDI ~1.1-1.5) 

Narrow Polydispersity → low roughness
Edges are defined by thermodynamics 

Not by lithography
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Fundamentals of DSA Rectification

Monodisperse BCP
(PDI < 1.005) 

Polydisperse BCP 
(PDI ~1.1-1.5) 

Narrow Polydispersity → low roughness
Edges are defined by thermodynamics 

Not by lithography

PDI LER LWR

1.15 4.8 4.7

1.20 5.8 5.2

1.24 6.2 5.9

+0.05

+0.04

+1.0

+0.4

+0.5

+0.7

Source: Lai et al., 2022 Polymer, Vol 249, 124853
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Fundamentals of DSA Rectification

Source: Stoykovich et al., 2010 Macromolecules 2334

Monodisperse BCP
(PDI < 1.005) 

Polydisperse BCP 
(PDI ~1.1-1.5) 

Guide pattern roughness decays rapidlyNarrow Polydispersity → low roughness
Edges are defined by thermodynamics 

Not by lithography

PDI LER LWR

1.15 4.8 4.7

1.20 5.8 5.2

1.24 6.2 5.9

+0.05

+0.04

+1.0

+0.4

+0.5

+0.7

Source: Lai et al., 2022 Polymer, Vol 249, 124853
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DSA Rectification + Pitch Division

Source: Singh et al., 2022 SPIE, 12054-6

Backbone

Pitch Division
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LER (3σ, nm) LWR (3σ, nm)

1.06 1.1Resist 
Rectification by 

DSA
DSA Defined 

Backbone

Addressing variability tails with DSA

Resist

Conventional Flow

DSA based EUV Rectification Flow

Source: Gurpreet Singh, SPIE2023 12497-29 
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Long tails for EUV backbones largely due to EUV variability (photon noise and resist stochastics)

Variability tails are ‘healed’ by DSA even with significantly lower EUV dose resist

Resist

Variability Tail Variability Tail

Normalized

Addressing variability tails with DSA

Local Line CD Segment Error (nm)

DSA Defined 
Backbone

EUV + DSA

EUV

Source: Gurpreet Singh, SPIE2023 12497-29 
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Pitch 
Halving

LER (3σ, nm) LWR (3σ, nm)

2.19 1.38

p18nm

p18nm

Pitch 
Halving

LER (3σ, nm) LWR (3σ, nm)

1.25 0.79
Local Space CD Segment Error (nm)
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43% lower LER with DSA-EUV P/2 at p18nm

Significant reduction of variability tails

Source: Gurpreet Singh, SPIE2023 12497-29 
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Minimum pitch defined by DSA looser pitch defined by EUV

DSA-SALELE - Device Relevant Patterning

Source: Gurpreet Singh, SPIE2023 12497-29 DSA

EUV

EUV mask #1 EUV mask #2

EUV mask #3
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21nm Process 
@ 18nm pitch

Optimized 
18nm Process

DSA-SALELE - 18nm Metal Pitch Electrical Yield

Robust electrical yield achieved at 18nm metal pitch

21nm Process 
@ 18nm pitch

Optimized 
18nm Process

Source: Gurpreet Singh, SPIE2023 12497-29 

Unoptimized 
Process

Unoptimized 
Process
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How far can we extend DSA-SALELE?

p24 EUV Backbone 
(CAR resist, 0.33NA)

LWR=1.08 
LER=1.04
SWR=1.09

DSA Rectification

Healthy DSA backbones at p24 achieved for subsequent pitch-division to p12 

Source: Florian Gstrein, ICPST-40 A3-1-2

To achieve device relevant 
patterning similar to p18, 
we need to optimize 
Materials
Process 
Design rules 
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Source: Martin van den Brink, SPIE 2023 Keynote Presentation
Marie Krysak, RIE Workshop, Invited talk, 2023

• 0.75 NA will further reduce depth 
of focus (DOF)

• Resist thickness for line/space 
applications projected to be 8-
12nm

➢ Need resists with higher EUV 
absorbance, lower stochastic 
variation, higher etch resistance

What’s Next – Hyper NA

GRC-NMP Research needs GRC Research Needs – SRC
MAPT Roadmap Chapter 4: Digital Processing MAPT (srcmapt.org)

https://www.src.org/program/grc/research-needs/
https://srcmapt.org/
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Next Gen DSA Materials <p24 Source: Gurpreet Singh, SPIE2023 12497-29 

GRC-NMP Research needs GRC Research Needs – SRC
MAPT Roadmap Chapter 4: Digital Processing MAPT (srcmapt.org)

Lithography Underlayer
Etch

Resist
Rinse

BCP
coating

BCP
bake

PMMA 
etch

1)

High-NA requires thin resist → less budget for DSA underlayer etch

2) ➢ High chi BCPs required for ≤ p24nm rectification

➢ Require new underlayers that are thin (<5nm) with high etch selectivity to resist (or directly 
patternable)

➢ High chi BCPs may require novel processing options
e.g. Solvent Vapor Annealing, Sequential Infiltration, etc 

https://www.src.org/program/grc/research-needs/
https://srcmapt.org/
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Conclusion and Outlook

▪ Future of Moore’s Law is brighter than ever. Novel materials play a key role.

▪ Novel process architectures such as stacked transistors and novel device materials require 
aggressive scaling of metal and via pitches.

▪ Process variations at every length scale pose a risk.

▪ Chemically Amplified Resists need attention.  

▪ Metal oxide resist platforms show impressive performance. 

▪ DSA fundamentally improves systematic & random variability in resists.

▪ Low-variability pitch scaling with highly scalable DSA enhanced EUV p/2.

The investment in the novel material ecosystem must continue. 
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