

Benefits of Jointly Funded Research in Packaging

Dr. Katie Yu

Sr. Director Package Innovation

February 28th, 2024

| Public | NXP, and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. @ 2024 NXP B.V.

75 billion devices by 2030 : Coverage across many industries

2 NXP Public

Industry Market Trends: R&D Drivers

	Application Class	Compute/Memory Bandwidth Limited	Interconnect Limited	Reliability Needs	Key Metrics	
HIGH PERF. COMPUTE	Al training/inference Cloud graphics/XR Engineering Simulation	High	High	Low-Med	Perf./Power	
	Handheld Devices	High	High	Low	Perf./Power	6
	5G/6G	High	High	High	Perf./Cost	
	ADAS, Entertainment, Networking, Automation	High	Med	High	Perf./Power /Cost	
	Electrification	Low	Low	High		
IOT/EDGE	Smart Home Consumer Devices	Low	Med	Med	Power/ Cost	
MEMS/SENSOR	Medical Devices Chemical Sensors Optical Sensors	Low	Med	Low	Power/ Cost	

MAPT Roadmap: Table 1.1 Future Requirements for Application Drivers (Extract)

- Common R&D challenges
 across market segments
- Broad industry use cases to enable **R&D reuse**
- Focused efforts to extend technology into adjacent markets: e.g. HPC to Auto Reliability, Cost
- Consortia R&D expands thought leadership

Virtual Prototyping for Total Quality/First Time Right

Virtual experiments for new device configurations to:

- Predict safe operating areas
- Identify critical use conditions
- Develop optimized design solutions

Modeling

Package and system level ECAD-MCAD interfaces Multiple length scales Coupled fields

Material Characterization

new packaging material viscoelasticity, plasticity, creep temperature and humidity

Overstress Criteria

Stress exceeds critical value causing instantaneous failure: EMC delamination, Si fracture.

Fatigue Criteria

Cyclic stress below critical values is causing damage accumulation and finally failure after a certain number of cycles: solder joint fatigue, RDL trace fatigue

Project Highlights: Maximizing R&D Value

- Millimeter Wave Packaging Research Antenna in Package
 Prof. Rashaunda Henderson-UT Dallas
 - Antennas on mold compound in QFN packaging technology (90-220GHz): Frequency, temperature dependence.
 - Material Characterization (DK/DF) performed from 90-325 GHz both frequency and temperature dependency.

• Characterization of Interfacial Adhesion under Cyclic Loading Prof. Rui Huang and Prof. Kenneth M. Liechti, University of Texas at Austin

- Novel method: Interfacial adhesion strength under cyclic loading (mechanical and thermal cycles)
- New cohesive zone model: interfacial adhesion and fracture.
- Improves package reliability prediction (e.g. EMC, Cu interface)
- Predictive-Models and Characterization Interfaces under Sustained High-Temp/ High-Humidity Operation in Auto Environments Prof. Pradeep Lall-Auburn University
 - Material interface characterization/ predictive model tools
 - Study of interfacial fracture toughness with aging
 - Damage Model development to capture the aged material behavior

Interface Adhesion Test Method(UT)

Interfacial Fracture Toughness vs. Aging (Auburn)

nxp.com

| Public | NXP, and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. @ 2024 NXP B.V.