Imaging Nano- and Micrometer-sized Magnetic Insulator Devices in the Presence of Spin-Torque

  • Authors:
    Aaron J. Rosenberg (Stanford), Colin Jermain (Cornell), Katja Nowack (Cornell), John R. Kirtley (Stanford), Hanjong Paik (Cornell), Sriharsha Aradhya (Cornell), Hailong Wang (Ohio State), John T. Heron (Cornell), Darrell G. Schlom (Cornell), Fengyuan Yang (Ohio State), Daniel C. Ralph (Cornell), Kathryn Moler (Stanford)
    Publication ID:
    P084522
    Publication Type:
    Paper
    Received Date:
    23-Jun-2015
    Last Edit Date:
    23-Jun-2015
    Research:
    2382.001 (Yale University)

Abstract

The spin Hall effect produces significant spin-torque from a charge current to enable reversible switching of conducting magnets. We study electrically insulating magnets, where the low intrinsic magnetic damping and the elimination of shunting currents through the magnet are expected to significantly reduce the critical current required for switching. With nano- and micrometer sized devices of Lu(3)Fe(5)O(12) (LuIG) in conjunction with the spin Hall metal Tantalum, we directly image the magnetic state before and after a current pulse using scanning SQUID microscopy. We present preliminary results that show that the switching symmetry observed to date is opposite that expected from the spin Hall effect, and instead follows the Oersted field assisted by Joule heating. Successful manipulation of magnetic insulators by electrical currents can be a platform for spintronic devices.

Past Events

  Event Summary
20–22 September 2015
SRC
SRC
TECHCON 2015
Sunday, Sept. 20, 2015, 8 a.m. — Tuesday, Sept. 22, 2015, 10 p.m. CT
Austin, TX, United States
Technical conference and networking event for SRC members and students.

4819 Emperor Blvd, Suite 300 Durham, NC 27703 Voice: (919) 941-9400 Fax: (919) 941-9450