Voltage-controlled Exchange Bias: A Building Block for Ultra-low Power Memory and Logic Device Applications

  • Authors:
    Christian Binek (U Nebraska/Lincoln), Will Echtenkamp (U Nebraska/Lincoln), Michael Street (U Nebraska/Lincoln), Ather Mahmood (U Nebraska/Lincoln), Junlei Wang (U Nebraska/Lincoln), Kirill Belashchenko (U Nebraska/Lincoln), Peter Dowben (U Nebraska/Lincoln), X. He (U Nebraska/Lincoln)
    Publication ID:
    P090350
    Publication Type:
    Presentation
    Received Date:
    16-Feb-2017
    Last Edit Date:
    21-Feb-2017
    Research:
    2398.001 (University of Nebraska/Lincoln)

Abstract

Voltage-controlled exchange bias (VCEB) enables dissipationless control of interface magnetic states thus paving the way towards ultra-low power, non-volatile spintronics. We exploit quantum mechanical exchange between a ferromagnetic (FM) CoPd thin film and the electrically switchable boundary magnetization (BM) of the magnetoelectric (ME) antiferromagnet chromia to enable VCEB, i.e., electrically shifting the FM hysteresis along the magnetic field axis. The switchable remnant magnetization serves as non-volatile state variable in memory and logic devices. I report on the challenging realization of VCEB in all thin film geometry and the role of BM as a key element to overcome limitations by the weak linear ME susceptibility of bulk chromia. I introduce voltage-switchable BM and VCEB, provide experimental evidence, present our latest results on VCEB in patterned thin films with reference to applications, and introduce a tabletop method to measure switching of the antiferromagnetic order parameter in chromia. The figure shows a cartoon of our magneto-optical method. It utilizes dispersion of the electric field-induced Faraday rotation in ME antiferromagnets to measure magnitude and sign of the order parameter and its coupling with BM.

We acknowledge support by NERC, a wholly-owned subsidiary of SRC, through CNFD, an SRC-NRI Center under Task IDs 2398.001 and 2587.001, by C-SPIN, one of six centers of STARnet, a SRC program, sponsored by MARCO and DARPA, and by NSF through MRSEC DMR-1420645. Research was performed in part in the NNF supported by the NSF under Award NNCI: 1542182.

4819 Emperor Blvd, Suite 300 Durham, NC 27703 Voice: (919) 941-9400 Fax: (919) 941-9450

Important Information for the SRC website. This site uses cookies to store information on your computer. By continuing to use our site, you consent to our cookies. If you are not happy with the use of these cookies, please review our Cookie Policy to learn how they can be disabled. By disabling cookies, some features of the site will not work.