Hyperdimensional Computing for Blind and One-Shot Classification of EEG Error-Related Potentials

  • Authors:
    Abbas Rahimi (UC/Berkeley), Jan Rabaey (UC/Berkeley), Pentti Kanerva (UC/Berkeley), Artiom Tchouprina (Ecole Polytechnique), Jose Millan (EPFL)
    Publication ID:
    Publication Type:
    Received Date:
    Last Edit Date:
    2385.003 (University of California/Berkeley)


The mathematical properties of high-dimensional (HD) spaces show remarkable agreement with behaviors controlled by the brain. Computing with HD vectors, referred to as "hypervectors," is a brain-inspired alternative to computing with numbers. HD computing is characterized by generality, scalability, robustness, and fast learning, making it a prime candidate for utilization in application domains such as brain-computer interfaces. We describe the use of HD computing to classify electroencephalography (EEG) error-related potentials for noninvasive brain-computer interfaces. Our algorithm naturally encodes neural activity recorded from 64 EEG electrodes to a single temporal-spatial hypervector without requiring any electrode selection process. This hypervector represents the event of interest and is used for recognition of the subject's intentions. Using the full set of training trials, HD computing achieves on average 5% higher accuracy compared to a conventional machine learning method on this task (74.5% vs. 69.5%) and offers further advantages: (1) Our algorithm learns fast by using 34% of training trials while surpassing the conventional method with an average accuracy of 70.5%. (2) Conventional method requires prior domain expert knowledge, or a separate process, to carefully select a subset of electrodes for a subsequent preprocessor and classifier, whereas our algorithm blindly uses all 64 electrodes, tolerates noises in data, and the resulting hypervector is intrinsically clustered into HD space; in addition, most preprocessing of the electrode signal can be eliminated while maintaining an average accuracy of 71.7%.

4819 Emperor Blvd, Suite 300 Durham, NC 27703 Voice: (919) 941-9400 Fax: (919) 941-9450

Important Information for the SRC website. This site uses cookies to store information on your computer. By continuing to use our site, you consent to our cookies. If you are not happy with the use of these cookies, please review our Cookie Policy to learn how they can be disabled. By disabling cookies, some features of the site will not work.