Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors

  • Authors:
    Yu-Chuan Lin (Penn State), Bhakti Jariwala (Penn State), Brian M. Bersch (Penn State), Ke Xu (Univ. of Pittsburgh), Yifan Nie (UT/Dallas), Baoming Wang (Penn State), Sarah M. Eichfeld (Penn State), Xiaotian Zhang (Penn State), Tanushree Choudhury (Penn State), Yi Pan (Paul-Drude-Institut für Festkörperelektronik), Rafik Addou (UT/Dallas), Christopher M. Smyth (UT/Dallas), Jun Li (Carnegie Mellon Univ.), Kehao Zhang (Penn State), Md Haque (Penn State), Stefan Foelsch (Paul-Drude-Institut für Festkörperelektronik), Randall M. Feenstra (Carnegie Mellon Univ.), Robert M. Wallace (UT/Dallas), Kyeongjae Cho (UT/Dallas), Susan K. Fullerton (Univ. of Pittsburgh), Joan Redwing (Penn State), Joshua A. Robinson (Penn State)
    Publication ID:
    Publication Type:
    Received Date:
    Last Edit Date:
    2383.001 (University of Texas/Dallas)


Atomically thin transition metal dichalcogenides (TMDs) are of interest for next generation electronics and optoelectronics. Here, we demonstrate device-ready synthetic tungsten diselenide (WSe2) via metal-organic chemical vapor deposition and provide key insights into the phenomena that control the properties of large-area, epitaxial TMDs. When epitaxy is achieved, the sapphire surface reconstructs, leading to strong 2D/3D (i.e., TMD/substrate) interactions that impact carrier transport. Even with 2D/3D coupling, transistors utilizing transfer-free epitaxial WSe2/sapphire exhibit ambipolar behavior with excellent on/off ratios (~107), high current density (1-10 μA·μm-1) and good FET mobility (~ 30 cm2·V-1·s-1) at room temperature. This work establishes that realization of electronic-grade epitaxial TMDs must consider the impact of the substrate and 2D/3D interface as leading factors in electronic performance.

4819 Emperor Blvd, Suite 300 Durham, NC 27703 Voice: (919) 941-9400 Fax: (919) 941-9450