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Semiconductor Research Corp. (SRC) Global Research Collaboration (GRC) is soliciting white papers in the Artificial Intelligence 
Hardware (AI Hardware) research program. The principal goal of this program is to create new highly efficient AI platforms to 
enable neuro-inspired, cognitive, and learning abilities which will be required to address the vast range of future data types and 
workloads as intelligence is enabled from edge devices to the cloud. 
 
The AIHW research needs are described in five major categories: 

1. Architectures for Power Efficient AI Acceleration  
2. Modeling, Analysis, and Simulation/Emulation of AI Hardware for Early System Exploration 
3. HW/SW Co-design of AI Compute Systems  
4. Secure and Robust AI Hardware 
5. Interplay of AI and System Architecture/Microarchitecture Design 

 
Each of these major categories are broken down into several sub-categories which describes the need in more detail. Even so, 
these are written to be broad in nature to not restrict the investigator’s approach. There is no priority order for either the major 
or minor needs that follow. In each category, there may be applications from large systems to small (datacenter and the 
edge/end node) and investigators should consider this in their submissions.  Members are looking for significant innovations, for 
example, 100X improvement in energy-performance efficiency or other key metrics for systems for emergent AI applications. 
 
The use of appropriate benchmarks and metrics to assess how far the effort advances the state-of-the-art will be a key part of 
the evaluation process. It is important that performance and efficiency metrics such as “TOPS/W” (tera ops/Watt) and “% 
utilization” of hardware be qualified as “peak,” “sustained,” or “average”. The primary metrics should include a performance 
metric, a power efficiency metric, and a mapping efficiency metric. For example, the end-to-end wall-clock execution time for a 
set of benchmarks, the energy consumed by the hardware on a benchmark set, and the utilization of the hardware resources 
during the execution. Breakdown of any metrics for training vs. inference helps identify the suitability of the innovation for 
deployment in different settings such as cloud, edge, mobile, etc. Appropriate metrics should be used to establish the impact of 
the advances in each setting.  For instance, total throughput and throughput per watt might be metrics for datacenter 
applications while optimal energy usage might be more appropriate for the edge/end node.  Accuracy of the results and/or 
reporting the metrics at iso-accuracy becomes an important factor for understanding the benefits of approximate computing 
techniques such as reduced precision FP. 
 
In addition to what is mentioned above, some metrics for consideration include 
• Inference accuracy (%) 
• Inference robustness to antagonistic inputs 
• Inference/unit of energy (per uJ/mJ/J/kJ) 
• Training/unit of energy (model training/J) 
• Throughput: inferences per unit time, training per unit time 
• HW cost metric: MACs (or equivalent) required per unit time 
• Memory metrics: local/global memory requirements (access time, latency, bandwidth, average per unit time and total 

energy per inference) 
• Statistical performance guarantees 
• Robustness and Explainability metrics 
• Scalability across edge to cloud platforms 
• Adaptability to different applications: Custom v/s generic AI acceleration 

 
The needs in the AIHW space cover a broad range of applications, including high performance processors for data centers, 
automotive, industrial, mobile and edge node computing and communication, and healthcare. Investigators are encouraged to 
link the results of their work with a potential application to help show the relevance of the proposed work. 
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SRC has also released a document called the Decadal Plan for Semiconductors (www.src.org/about/decadal-plan/ ) which 
describes five “Seismic Shifts” facing the electronics industry in the coming decade. Research should address issues arising from 
one of them: 

• Smart Sensing – The Analog Data Deluge 
• Memory & Storage – The Growth of Memory and Storage Demands 
• Communication – Communication Capacity vs. Data Generation 
• Security – ICT Security Challenges 
• Energy Efficient – Compute Energy vs. Global Energy Production 

 
The Global Research Collaboration (GRC) division of SRC focuses on research in a timeframe five or more years ahead of technology 
release. Research on advanced tools and techniques such as modeling, simulation, and characterization can be of value with 
implementation timelines as low as one to two years post project completion. This timeframe represents the “sweet spot” for pre-
competitive, collaborative research, after which the industry focuses on proprietary development for technology differentiation. 
Successful research proposals will need to match this timing.  
 
Moving forward, the SRC is also embarking on an effort to broaden participation in its funded research programs. This aggressive 
agenda will help us drive meaningful change in advanced information and communication technologies that seem impossible 
today. In the programs we lead, we must increase the participation of women and under-represented minorities as well as strike a 
balance between U.S. citizens and those from other nations, creating an inclusive atmosphere that unlocks the talents inherent in 
all of us. Please visit https://www.src.org/about/broadening-participation/ for more information about the 2030 Broadening 
Pledge. 
 
Investigators who are funded will be expected to publish at top-tier conferences, including but not limited to ISSCC, VLSI, HPC, 
ISCA, MICRO, HPCA, ESSCIRC, and ESWEEK (CASES, CODESISSS, & EMSOFT). 
 
CONTRIBUTORS 

 
AMD Ganesh Dasika 
Arm Jose Joao, Dam Sunwoo 
GLOBALFOUNDRIES Ted Letavic, Greg Northrop, Jose Versaggi 
IBM Krishnan Kailas, Matt Ziegler 
Intel Michael Kishinevsky, Greg Chen, Rosario Cammarota, Omesh Tickoo 
MediaTek Jenwei Liang 
NXP Ben Eckermann, Adam Fuks 
Qualcomm Ramesh Chauhan, Francois Atallah 
Siemens EDA Russell Klein, Neil Hand 
Texas Instruments Mahesh Mehendale, Clive Bittlestone 

  SRC John Oakley  
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1 Architectures for Power Efficient AI Acceleration  

Accelerating future AI systems may benefit from architectures, circuits, and/or devices beyond today’s conventional computing 
approaches. New architectures or extensions of existing approaches that depart from the deep learning neural network 
paradigm may provide significant performance and/or power improvements for certain applications. Novel circuits and/or 
devices may also unlock capabilities unattainable from conventional circuit design and CMOS technology. At the datacenter 
system level, the challenge of integrating multiple chips or approaches to achieve the equivalent of multi-chip systems are of 
high importance for the future of AI computing. 

General challenges include but are not limited to: Energy-efficient end-to-end system architectures and partitioning (cloud to 
sensor) and optimizing energy/bandwidth/latency tradeoffs at all levels within the computational hierarchy (data center, 
gateway, and edge/end node). 

These challenges are most acute at both ends of the AI computational hierarchy (e.g. Datacenter, Edge AI, and TinyML-type 
applications). Devices on the edge/end nodes are typically heavily resource constrained with stringent cost, performance, 
power, communication latency, and bandwidth limitations. Also, all edge/end node AI and microcontroller functionality typically 
resides on a single die and is implemented on older process nodes to gain access to integrated NVM and high-performance 
analog, creating additional area/power efficiency challenges.  Research is needed to optimize the interplay of on-chip sensing, 
compute, and off-chip communication requirements at the edge/end node.  

In the datacenter, high throughput is crucial, but must be balanced by power efficiency. Datacenter computing environments 
must combine energy efficient processor designs, multi-chip/module communication for data movement and memory access, 
and the flexibility/programmability to support diverse workloads. Center of cloud AI computation is highly data access limited 
(bandwidth, latency, storage), data movement limited (I/O bandwidth, power), and often thermally bounded. Extensions to 
existing approaches as well as novel architectures such as AI compute-in-memory that address fundamental limitations are of 
interest. 
1.1 New AI architectures, including but not limited to those using emerging devices and circuits, e.g., reduced 

precision/dynamic range computation, in-memory and near-memory computing based on charge-based and resistance-
based memory devices, other NVM devices, mixed signal techniques, compute-in-DRAM, compute-in-cache, etc. 

1.2 System-level integration solutions for emerging architectures, e.g., SoC, 3D, packaging, inter-chip / module 
communication, partitioning, etc. 

1.3 Neuromorphic computing:  algorithms and hardware for biologically plausible neuron models and learning rules, such as 
spiking neural networks, spike timing dependent plasticity, and bio-plausible deep learning 

1.4 Probabilistic and approximate computing: use for AI/Machine Learning architectures as well as acceleration of 
probabilistic AI 

1.5 High/Hyper-dimensional computing: algorithms, practical applications, energy efficient architectures 
1.6 AI architectures using quantum computing  
1.7 Resource efficient training and inference at the edge: self-teaching/adaptation/optimization/incremental-training of 

initial algorithms to local application conditions/needs within the strict computational/memory/power/costs constraints 
imposed by edge hardware/software including incremental learning systems (for example TinyML-type applications and 
reduced precision systems) 

1.8 End-to-end optimization schemes that span system-algorithm-architecture-circuit-technology stacks for minimizing 
energy per decision without compromising accuracy, throughput, and cost (power, area, performance), security/privacy 
constraints for AI systems consisting of sensors, pre- and post-processors, communication networks, and AI computer 
hardware 
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2 Modeling, Analysis, and Simulation/Emulation of AI Hardware for Early System Exploration 

End-to-end performance and energy efficiency of AI systems are determined by various components including memory 
subsystem, I/O, on-chip and off-chip network, in addition to core AI computation.  Challenges include, but are not limited to, 
characterizing and modelling long running AI computations that often take days/weeks to complete.  Novel methods for 
modelling, simulation and emulation are essential for early design-space exploration of next generation AI systems. Finally, a 
better understanding of the theoretical behavior and limits of AI to better guide a design of AI systems is needed. 
2.1 AI workload analysis and characterization 
2.2 Efficient techniques for end-to-end performance/power/reliability modelling (cycle-accurate and analytical), simulation, 

emulation, and prototyping for exploration of AI systems 
2.3 Benchmarks for emerging AI applications, and metrics for comparing AI systems (including applications in 2.4) 
2.4 Application-level understanding and profiling of new AI applications including: 

a) recent deep learning networks (e.g. graph convolutional networks, energy-based models, foundation models) 
b) techniques for machine reasoning 
c) neuro-symbolic approaches 
d) Emerging application domains: examples include mmWave sensing, Industry 4.0, etc 

2.5 Modeling infrastructure and techniques for AI computation at the edge/end node, including sensors, applications in 2.4, 
and more 

2.6 Analysis and comparison of theoretical limits of algorithms and compute efficiency of AI systems (e.g. understanding 
theoretical limits of precision, sparsity, and compression) 

 
3 HW/SW Co-design of AI Compute Systems 

Interactions and dependencies between hardware and software are integral for achieving high performance on AI workloads. 
These two fields of study cannot be decoupled. Topics of interest include compilers that map deep learning models to CPU, GPU, 
and accelerator hardware with reduced data movement, training algorithms (e.g. NAS) that are hardware-cognizant in their 
optimizations and enabling traditionally non-AI Applications with AI.  
3.1 Compilers and run-time management that map AI models/algorithms/computations to homogeneous or 

heterogeneous compute platforms including CPU/GPU/hardware accelerators 
3.2 Compilers and run-time management that optimize data storage in compute in/near memory for reduced data 

movement 
3.3 Run-time management of large number of accelerators/cores including virtualization and security of AI computation 
3.4 Co-design of AI exploration, smart sensing, and training at the edge/end node 
3.5 Systems supporting efficient self-supervised learning algorithms 
3.6 Co-design of AI and HPC and other scientific applications, e.g. AI-based surrogate models 
3.7 Co-design of CPU-friendly AI model training and inference algorithms including using AI-specific ISA extensions 
3.8 Co-design of AI accelerators and interconnect/communication for power-performance-memory trade-offs  
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4 Secure and Robust AI Hardware 

Machine Learning has made enormous strides in recent years in its ability to train models and infer results with higher degrees 
of accuracy than many other types of algorithms. However, one of the potential stumbling blocks for machine learning adoption 
in many applications is the issue of fairness, robustness, privacy, and explainability. Many machine learning algorithms are 
somewhat of a “black box”, with no easy way to determine why the algorithm produced the specific output. Explainability is key 
to challenge an AI/ML-based decision, especially in safety-critical applications from a SOTIF (Safety of The Intended 
Functionality) perspective. This may be required, for example, to understand whether a correct decision was made in scenarios 
such as why a loan application was rejected by an AI/ML-based application, or why an autonomous vehicle in an accident decided 
to drive the route it did. Another important vector is achieving privacy in AI hardware architectures. 

4.1 Methods and architectures that return a result and a rationale for that result, or that add explainability to existing 
AI/ML-based solutions 

4.2 Architectures and algorithms to add fairness into machine learning algorithms and architectures while maintaining 
best possible performance and accuracy, even when trained with biased data 

4.3 Architectures robust against both natural variations of input data and adversarial attacks to ensure stability of machine 
learning and AI decisions. Also, included under this are architectures capable of uncovering corruption/bias of training 
phase data and model integrity 

4.4 Enhancing robustness by building prior knowledge about the task to be learned and/or about the training data into the 
ML solution, e.g. training with a potentially limited set of input data supplemented by rules-based data, and/or pre-
wiring the neural network, and/or data synthesis to enlarge training data sets 

4.5 Architectures with the ability to assess the functionality of its AI/ML process, so that a system with functional safety 
requirements can identify a malfunction and establish appropriate safety actions 

4.6 Privacy and confidentiality preserving AI architectures and systems.  Included in this are methods for anonymizing and 
securing training data. (e.g. Homomorphic Deep Learning) 

 
5 Interplay of AI and System Architecture/Microarchitecture Design 

Advances in AI/ML can significantly impact system design in at least two ways. First, AI/ML-based or AI/ML-inspired components 
can be directly used in hardware designs. For example, branch predictors, prefetchers, and other hardware predictors can be 
based on ML models or can be optimized using ML models; scheduling and resource management at the core, chip, node, and 
data center levels can be based on ML and improve over heuristic-based approaches. Second, AI/ML can be part of the system 
design process itself, e.g., providing optimizations at the system, architecture and micro-architecture levels that improve over 
traditional hardware design methods and flows.  

On the other hand, hardware and systems for AI/ML can benefit from groundbreaking advances in system-level architecture, 
memory systems and optimizations across multiple levels of the hardware/software stack that can directly impact future AI 
hardware on different design targets: performance, energy efficiency, security, etc. This interplay of AI and system level design is 
fundamental for design, construction, and management of intelligent self-optimizing systems. 

5.1 AI-based or AI-inspired components that can be used in hardware designs: e.g., hardware predictors, prefetchers, 
resource management controllers, etc. 

5.2 AI methods for optimization of hardware designs at the system, architecture and micro-architecture levels, e.g. 
communication, multi-media & graphics excluding CAD software optimizations (which are part of the CADT thrust) 

5.3 AI-based design and optimization of AI accelerators and their integration in bigger systems 

5.4 Synergistic advances in system design and AI/ML to improve performance, energy-efficiency, reliability/robustness, and 
security 

5.5 AI-assisted operating system, run-time system, and hardware for thread scheduling, DVFS, power state transitions and 
other hardware resource management 

 


