Spin Filters for Spintronic Logic Devices

NRI-NSF project Annual review presentation

Dipanjan Mazumdar MINT Center, University of Alabama

September 9th 2010

THE UNIVERSITY OF ALABAMA

Post Docs: Dipanjan Mazumdar, Vijay Kartik and Jianxing Ma

Graduate Students: Xing Zhong, Hunter Sims, Manjit Pathak

Faculty: Arunava Gupta, Patrick Leclair, Bill Butler, Su Gupta, Tim Mewes

Collaborators

Polarized Raman Spectroscopy Milko Iliev, Texas Center for Superconductivity and Advanced Materials

Depth-resolved Cathodoluminescence Spectroscopy Shaopin Shen and Leonard J. Brillson, Ohio State University

High Resolution Transmission Electron Microscopy Ranjan Dutta, Jawaharlal Nehru Centre for Advanced Scientific Research, India

- 1. A Robust Approach for the Growth of Epitaxial Spinel Ferrite Films, JAP (2010), (*in press)*
- 2. Formation of antiphase domains in NiFe₂O₄ thin films deposited on different substrates, APL 97, 071907 (2010)
- 3. Monitoring B-site ordering and strain relaxation in NiFe2O4 epitaxial films by polarized Raman spectroscopy (submitted to PRB)

and a couple more in progress...

- Devices which are sensitive to the electronic spin degree of freedom
- Devices showing the *magnetoresistance* effect constitutes the most mature area of spintronics
- Many material candidates exist capable of showing the MR effect
- Emphasis on room-temperature applications
- Easy manipulation of magnetotransport properties by an external magnetic field or current

Outline

- 1) Part 1- Overview of MR devices
- a) GMR and TMR devices
- b) Spin filter devices

2) Part 2 - Materials and Characterization

- a) Magnetic Insulators
- b) Film growth, Raman, TEM, Cathodoluminense, Device fabrication

3) Part 3 - Theory

Progress in Ab-initio techniques to estimate band-gap

First observed in Fe/Cr multilayers (FM/M/FM)

Baibich et. al. PRL (1988)

2007 Physics Noble Prize, A. Fert and P. Grunberg

THE UNIVERSITY OF ALABAMA

Magnetic Tunnel Junction (FM/I/FM)

First observed by Julliere in 1975 in Fe/Ge/Co trilayer, MR~14% at 4.2K.

Julliere Model

TMR =
$$\frac{2P_1P_2}{1 - P_1P_2}$$

P₁, **P**₂ are spin polarizations of two FM materials

$$P_{1(2)} = \frac{D_{1(2)}^{\uparrow} - D_{1(2)}^{\downarrow}}{D_{1(2)}^{\uparrow} + D_{1(2)}^{\downarrow}}$$

E UNIVERSITY OF ALABAMA

9/9/2010

No Room temperature effect seen by Julliere. Results never reproduced.

Physics Letters A 54(3): p. 225-226 1975

Magnetic Tunnel Junction (cont.)

In 1995, substantial RT MR (>10%) was observed by Moodera (MIT) and Miyazaki (Japan)

Until 2004, 20-70 % MR has been reported on AI_2O_3 based junctions

Using Julliere's formula,

TMR ~ 67% for P = 0.5 ~ 20% for P= 0.3

THE UNIVERSITY OF ALABAMA

For Fe, Co and CoFe there is no minority Δ_1 band at the Fermi level

Zhang and Butler (2004)

THE UNIVERSITY OF ALABAMA

First high MR realization

Yuasa et. al. 2004, AIST Japan

Current highest TMR at RT is over 600%

THE UNIVERSITY OF ALABAMA

Spin filter devices ...

Conceptually explored back in the 60s (Esaki, Stiles, Von Molnar)

 $2\Delta\Phi$ = 0.54 eV for EuO

THE UNIVERSITY OF ALABAMA

Spin Filters (cont.)

 $T < T_c$

 φ_{\circ}

- Spin-dependent barrier height in FM insulator
- Spin filtering efficiency ~100% has been demonstrated at low temperatures
- MR >100% demonstrated at LT
- Small RT evidence with spinels
- Potentially, TMR ratios of over 10⁵ with double spin filters (Worledge, APL 2000)

Early Work – Moodera et. al. (88), LeClair et. al. (02) on chalcogenides Luders et. al. (06), Ramos et. al. (07) on spinel-ferrites Gajek et. al. (06,07) on perovskites

THE UNIVERSITY OF ALABAMA

 $\Delta \phi_{ex}$

 $I_{\uparrow} \gg I_{\perp}$

First step: Spin filter + Magnetic electrode

- Spin filter highly polarized current ferromagnet - spin analyzer
- Parallel magnetizations: low resistance
- Antiparallel magnetizations: high resistance
- Advantages?
 Spin filter efficiency is high

LeClair et. al. - 130% MR @ 5K - Al/EuS/Gd

Gajek et. al. - 50% MR - Au/BiMnO₃/LSMO

Double Spin filter...

If one filter is good ... two are better!

Functions like an optical polarizer/analyzer

Provides higher on/off ratio required for logic applications

Up to 10⁵ MR ratio predicted (Worledge)

Part 2 – Materials and Characterization

Materials - Magnetic Insulators with High Tc

		materiai	magnetism type, T _C (K)	oxides/metals			
Single and	La _{1-x} Sr _x MnO ₃ x = 0.3-0.4, FM, <i>T</i> _C ~ 360 K	La₂NiMnO ₆	FM, 287				
		La₂CoMnO ₆	FM, 233	Conducting LaNiO ₃ , ¹ CaRuO _{3,} ¹			
		Bi₂CuMnO ₆	FM, 340				
Double	Ca₂FeMoO ₆ ,	Ca₂CrReO ₆	FRI, 360	SrRuO ₃ > 160K, Nb:SrTiO ₃ Insulating			
Perovskites	Sr ₂ FeMoO ₆ , Sr ₂ CrReO ₆ , FM <i>T</i> _C ~ 365, 420, 635 K	Ca₂FeReO ₆	FRI, 525	SrTiO ₃ , LaAlO ₃ , NdGaO ₃ , LaMnO ₃ ²			
Spinolo	Fe ₃ O ₄ , FRI	NiFe ₂ O ₄	FRI, 850	Conducting (TiN, Pt)			
Spillers	<i>Τ</i> _c ~ 600 K	CoFe ₂ O ₄	FRI, 795	Insulating MgAl ₂ O ₄			
FM: Ferromagnetic; FRI: Ferrimagnetic ¹ PM: Paramagnetic Metal; ² AF: Antiferromagnetic Insulator							

Spinels

- General Formula AB₂O₄
- Fcc oxygen lattice
- 12.5% tetrahedral and 50% octahedral sites occupied
- A and B are cations with valence +2 or +3

Normal and Inverse Spinel

Normal – (A)_{tet} (BB)_{oct}

Inverse – (B)_{tet} (BA)_{oct}

Spinels (cont.) – Problem of cation ordering

- Bulk NFO and CFO orders in the inverse spinel structure
- Magnetically, it is a ferrimagnetic system. The Fe sublattice aligns anti-ferromagnetically. Resultant magnetic moment is from Ni²⁺ (Co²⁺) ion for NFO (CFO).
- Magnetic moment of 2μB/fu for NFO and 3μB/fu for CFO
- Exchange interactions are mediated by O²⁻ ions (superexchange interaction).

Growth requirements

High quality epitaxial thin films , defect free, with bulk magnetization preserved down to unit cell level.

Pulsed Laser Deposition (PLD) of Oxide Materials

Two PLD chambers

KrF excimer laser source ~ 248 nm Max. temperature – 750 C In-situ RHEED monitoring.

THE UNIVERSITY OF ALABAMA

UA Characterization Facilities

THE UNIVERSITY OF ALABAMA

Growth of high quality epitaxial NFO and CFO thin films

220 nm film thickness

Journal of Applied Physics (2010)

Structural Characterization (cont.)

THE UNIVERSITY OF ALABAMA

Magnetic characterization

Polarized Raman Spectroscopy Investigations

CENTER FOR MATERIALS FOR INFORMATION TECHNOLOGY An NSF Science and Engineering Center

THE UNIVERSITY OF ALABAMA

Polarized Raman Spectroscopy (cont.)

Sputtered samples (NFO-B) from Group of J. Fontcuberta (Spain)

Transmission electron microscopy analysis

Formation of Anti-phase boundaries

- Large spinel unit cell
- Many inequivalent nucleation sites
- Could lead to anti-ferromagnetic coupling

Cross section TEM

Anti-phase boundaries observed in all films grown at various temperatures

Plan-view TEM

(APL 2010)

Qualitative estimates show low APB density for small lattice mismatch

High-resolution TEM

Dark diffuse regions indicate APBs

Empty tetrahedral void position

(b) (d) Empty tetrahedral void position

Occupation of interstitial tetrahedral sites

Cathodoluminescence Spectroscopy

- CL is defined as the emission of light (200 nm to 2500 nm) produced by electron irradiation
- When the electron and hole recombine, the ruptured chemical bond is restored, releasing its excess energy by the emission of an optical photon
- The DRCLS technique is capable of probing band gap and deep level defect features

- NiFe₂O₄ spinel ferrite films grown on MgAl₂O₄(100) substrates with ozone-assisted PLD
- Two series of samples:
 - 1. As-grown 325°C; As-grown 550°C
 - 2. As-grown 325°C; Annealed in O₂ at 550 °C; and 700 °C
- Two different CL measurements:

1. 80K CL chamber 1 (high current, less charging, large beam radius good for bulk information, lens luminesecnce)

2. 12K in SEM chamber (no lens luminesecnce, low temperature, severe charging, small beam radius-localized information)

• Sample thicknesses: approx. 220 nm ~250 nm

CL Measurements (cont.)

All As-Grown samples:
Higher growth Temperature, better defined impurity peaks and band gap emission

Same sample different annealing:

- Higher annealing T, strong 2.36 eV peak
- All suppressed E_g peak
- Again low T (550°C) annealing change very little of the CL spectra

- 3.32 eV peak from SEM & ~3.4 eV shoulder from chamber 1 are essentially same, that is band gap of NFO
- 1.59 ev: Impurity frequently seen in complex oxide
- 1.67 eV: Probably due to second order emission of band gap
- 1.76 eV: NiO or Ni²⁺
- 1.9 ~ 2.02 eV: Fe³⁺V
- ~2.3 eV: might due to Fe⁴⁺
- 2.3 ~ 2.4 eV: might also due to Ni ion
- Broad 2.4~2.5 eV deep level dominates emission: V_o-related
- 2.8 eV: Fe⁴⁺V
- 2.8 ~3.05 eV: Ni ion

- Best as-grown: 550°C
- Best anneal: 550°C
- Both samples show defect levels at similar energies: 1.76 eV, 2.45 eV and 3.15 eV
- Possible band gap emission around 3.35~3.4 eV depend on measurement temperature
- Defect levels identified: *Oxygen related:* 1.59 and 2.5 eV *Ni related:* 1.76, 2.3~2.4, 2.8~3.05 eV *Fe related:* 1.9~2.02, 2.3, 2.8 eV

Spin filter device Prototype

Thin non-magnetic layer decouples the magnetic layers

THE UNIVERSITY OF ALABAMA

Device processing steps

THE UNIVERSITY OF ALABAMA

Microfabrication tools

Solitec photoresist spinner

Karl Suss mask aligner

Intelvac Ion mill

Denton Vacuum E-Beam Evaporator STS Advanced Oxide Etcher (AOE)

LSMO (30)/STO(3)/NFO(3)/Au(100)

THE UNIVERSITY OF ALABAMA

LSMO (30)/STO(3)/CFO(3)/Au(100)

THE UNIVERSITY OF ALABAMA

- Growth of high quality, atomically flat NFO and CFO thin film achieved over a wide temperature window
- Raman spectroscopy show films grown at higher temperature are single crystal quality
- TEM analysis show presence of anti-phase boundaries
- Cathodoluminescence spectroscopy technique measured a band gap of 3.3eV for NFO films
- Spin filter device prototypes show expected magnetotransport properties

Theoretical – Density Functional techniques

Master equation

$$\left(-\frac{\hbar^2}{2m_e}\Delta + V^{\text{ion}}(\mathbf{r}) + V^{\text{el}}(\mathbf{r}) + V^{\text{xc}}(\mathbf{r})\right)\phi_n(\mathbf{r}) = E_n\phi_n(\mathbf{r})$$

V^{xc}(r) - Exchange and correlation term – Approximated by LDA or GGA in DFT

- This approach is quite successful in predicting structural properties
- Fails to describe excited states band gap for instance

Theoretical (cont.) – Hybrid functionals

Hartree Fock theory → hybrid functionals

$$\left(-\frac{\hbar^2}{2m_e}\Delta + V^{\text{ion}}(\mathbf{r}) + V^{\text{el}}(\mathbf{r})\right)\phi_n(\mathbf{r}) + \left(V^{\text{x}}(\mathbf{r},\mathbf{r}')\phi_n(\mathbf{r}')d^3\mathbf{r}' = E_n\phi_n(\mathbf{r})$$

- Hybrid functional (HF) calculations combine the typical DFT exchange-correlation approximation with a portion of the exact Hartree-Fock exchange. Doing so greatly increases both the accuracy of the band gaps and the time required to run the calculation.
- The HSE03 method uses 25% of the exact Hartree-Fock exchange, 75% of the PBE exchange (and 100% of the PBE correlation term), and a screening of the non-local contributions at 0.3 Å.

Package used -VASP 5.2

Theoretical (cont.)

		HSE			
8	PBE	ω=0.300	ω =0.207	PBE0	Expt.
GaAs					
Γ _{1c}	0.56	1.30	1.45	2.01	1.52ª
X_{1c}	1.46	1.88	2.02	2.67	1.90ª
L_{1c}	1.02	1.61	1.76	2.37	1.74ª
Si					
Γ _{15c}	2.57	3.16	3.32	3.97	3.34-3.36,b
					3.05°
X_{1c}	0.71	1.14	1.29	1.93	1.13 ^d ,1.25 ^c
Lic	1.54	2.08	2.24	2.88	2.06(3) ^e ,
					$2.40(15)^{f}$
С					
Γ ₁₅	5.59	6.74	6.97	7.69	7.3ª
X _{1c}	4.76	5.68	5.91	6.66	
L_{1c}	8.46	9.77	10.02	10.77	
MgO					
Γ ₁₅	4.75	6.24	6.50	7.24	7.7 ^g
X4'	9.15	10.66	10.92	11.67	
L_1	7.91	9.39	9.64	10.38	
NaCl					
Γ15	5.20	6.31	6.55	7.26	8.5 ^h
X4'	7.60	8.70	8.95	9.66	
L_1	7.32	8.43	8.67	9.41	
Ar					
Γ15	8.68	10.07	10.34	11.09	14.2 ⁱ

THE JOURNAL OF CHEMICAL PHYSICS 125, 249901 2006

Preliminary Band gap data

Up Spin NFO Minority Bands Along Γ to Z near E_F NFO Majority Bands Along Γ to Z near E_{F} 3 3 2 2 1 1 - E_F (eV) - E_F (eV) 0 0 ш ш -1 -1 ------2 -2 -3 -3 2 0 6 8 10 4 2 10 0 6 8 4 k-point no. $(0 = \Gamma, 10 = Z)$ k-point no. $(0 = \Gamma, 10 = Z)$ Up spin band gap ~ 3.3 eV Down spin band gap ~ 3.0 eV

Down Spin

Reasonable agreement with CL data

Fundamental issues

1) Address APB issue through growth engineering

2) Spin polarization measurements with TiN and NbTiN.

3) Conducing AFM measurements to extract tunnel barrier properties (barrier height)

4) *Ab-initio* Hybrid functional and GW measurements plus estimate to estimate band gap and exchange splitting . Estimate of decay constant

Devices

1) Working spin-filter demonstration

2) Preliminary double barrier synthesis and TMR properties

THE UNIVERSITY OF ALABAMA

Thank you for your attention!!

