New Research Topics

Breaking new ground in new research areas with compelling new initiatives

Request More Information

SRC is a non-profit organization that has been managing university research and relationships for over 30 years. We facilitate collaboration between industry, government agencies, and academia. Our mission is to provide solutions to the most difficult technology challenges facing our industry partners.

Interaction with top universities world-wide enables us to consistently produce the best and brightest students, while giving our members access to the research results and IP created by their work. Come join an elite group of industry leaders to gain insight through advanced research and diversity of viewpoints.

SRC-AC Automotive Cybersecurity

Research on automotive cybersecurity will complement SRC’s current research effort focused on hardware-oriented cybersecurity called Trustworthy and Secure Semiconductors and Systems (T3S) and cover areas such as:

Automotive
Electronics

      • Cybersecurity Strategies
      • Robust security of systems, component, and networks
      • Threat Analytics
      • Safety
      • Connected Automotive Ecosystem and Communications
      • Validation of correctness and security for vehicle systems

SRC-AVAutonomous Vehicles

Research on autonomous vehicles will be a new SRC research program. There is a broad range of research themes and topics such as:

      • Computer Vision
      • Predictive Analytics
      • System Architectures
      • Communication
      • Safety

SRC-MISTMolecular Information Storage

Recent work has shown that global demand for conventional silicon-based memory is growing exponentially, while silicon production is growing only linearly. This disparity guarantees that silicon-based memory will become prohibitively expensive for Zetta-scale “big data” deployments within two decades.

Recent studies by three distinct research groups have demonstrated proof-of-concept that DNA can be used to support scalable, random-access and error-free information storage. These advances now make DNA a very attractive potential alternative to silicon for information storage, because:

      • DNA has an information storage density that is several orders of magnitude higher than any other known storage technology. In theory, a few tens of kilograms of DNA could meet all of the world’s storage needs for centuries to come.
      • DNA can store information stably at room temperature for hundreds of years with zero power requirements, making it an excellent candidate for large-scale archival storage.
      • With technology advances, DNA could be orders of magnitude cheaper to produce than wafer-grade silicon.

Workshop conducted in April 2016 (co-sponsored by IARPA), report assembled.

SRC-ICA Intelligent Cognitive Assistants

As cyber-physical systems evolve to incorporate more cognitive intelligence capabilities, the interface between them and their human users will also have to evolve to enable them to enhance their benefits to society. How to optimize the collaborative interaction of humans and machines is an open research question. The ICA research program will focus on topics including:

Intelligent Cognitive
Assistants

      • cognitive psychology (perception vs. cognition)
      • natural interfacing (natural language processing and multi-modal communications)
      • artificial intelligence and deep learning
      • system architectures and algorithms
      • ensuring human-machine collaboration and trust

SRC-BEMBioElectronic Medicine

Imagine that we desire to design and fabricate an active sub-100 micron-sized system that performs in-vivo sensing and direct electrical interaction with a single living cell for a therapeutic action. The technological challenges that must be addressed to develop such a system are daunting and encompass almost every facet of VLSI and bioengineering technologies. Areas requiring study:

BioElectronic
Medicine

      • Bioelectronic Microsystems: Fundamentals and Application Perspectives
      • Electronic Signals treatment for therapeutic applications
      • Bioelectronic  Cell – Replacing drugs by VLSI technologies
      • Biocompatibility issues of bioelectronic technologies

 

Request More Information

For more information on any of the listed programs, please contact David Henshall.

4819 Emperor Blvd, Suite 300 Durham, NC 27703 Voice: (919) 941-9400 Fax: (919) 941-9450

Important Information for the SRC website. This site uses cookies to store information on your computer. By continuing to use our site, you consent to our cookies. If you are not happy with the use of these cookies, please review our Cookie Policy to learn how they can be disabled. By disabling cookies, some features of the site will not work.