IIT-Bombay, Applied Materials and SRC Collaborate to Advance Flash Memory Technology

SRC and Applied Materials make a commitment to tapping the talent offered by Indian research and developing the potential for significant progress in memory design

May 19, 2008

RESEARCH TRIANGLE PARK, N.C. - The Semiconductor Research Corporation (SRC), through its Global Research Collaboration program, announced a collaborative effort between the Indian Institute of Technology at Bombay (IIT) and Applied Materials, Inc. to advance NAND flash memory technology. NAND flash is one of the most rapidly evolving technologies today, enabling a large variety of portable electronic devices from media players to navigation systems to solid-state drives for laptop computers. This international research effort is focused on providing breakthrough technology that can lead to a broad range of significantly smaller and more powerful portable electronic devices in the next five years.

"IIT is deeply engaged in NAND flash memory research and has been an excellent partner in helping us to continue to drive solid-state memory technology development," said David Kyser, senior director of strategic external research in Applied Materials' department of Advanced Technology/CTO. "This type of collaboration, facilitated by SRC, is an efficient way to drive the commercialization of new technologies: Industry provides near-term focus while academia brings innovation and scientific rigor."

An example of this important research has recently been presented by IIT and Applied Materials at the recent International Reliability Physics Symposium in Phoenix, AZ. As NAND flash devices continue to scale, problems with reliability and lifetime caused by cell-to-cell interference arise when conventional floating-gate (FG) memory cells are used. Charge-trap flash (CTF) is a promising replacement for FG because it exhibits negligible cell-cell interference, yet has a similar structure and manufacturing process to FG and is thus attractive for memory device manufacturers to implement using existing equipment.

The primary innovation is the development and optimization of an engineered trap layer consisting of two nitride layers with different compositions, reinforced by a silicon oxy-nitride barrier layer. This novel structure was found to exhibit negligible cycling degradation and optimum programming characteristics, offering an alternative to approaches using more complex high-k and metal gate materials. The new structure has the potential to scale down to the sub-3xnm technology node, offering much higher storage densities than are available today.

"Materials development and process integration are the keys to implementation of the new cell designs," said Souvik Mahapatra, associate professor in the department of electrical engineering at IIT-Bombay. "The diverse, but complementary, perspectives among this team of researchers have served to more quickly uncover the physical mechanisms of endurance damage. These have provided for better understanding of reliability and consequently improved device design."

"This collaboration reflects SRC's commitment to tapping the deep talent offered by Indian research and the potential for significant progress in memory design," said Steven Hillenius, executive vice president of SRC. "The success from this work should lead to higher standards for functionality in future electronics."

About IIT: IIT Bombay, set up by an Act of Parliament, was established in 1958, at Powai, a northern suburb of Mumbai, India. Today the Institute is recognized as one of the centres of academic excellence in the country. Over the years, there has been dynamic progress at IIT Bombay in all academic and research activities, and a parallel improvement in facilities and infrastructure, to keep it on par with the best institutions in the world. Institutes in positions of excellence grow with time. The ideas and ideals on which such institutes are built evolve and change with national aspirations, national perspectives, and trends world - wide. IIT Bombay, too, is one such institution. Learn more at www.iitb.ac.in.

About Applied Materials: Applied Materials, Inc. (Nasdaq:AMAT) is the global leader in Nanomanufacturing Technology™ solutions with a broad portfolio of innovative equipment, service and software products for the fabrication of semiconductor chips, flat panel displays, solar photovoltaic cells, flexible electronics and energy efficient glass. At Applied Materials, we apply Nanomanufacturing Technology to improve the way people live. Learn more at www.appliedmaterials.com.

About SRC GRC: Global Research Collaboration (GRC) is one of three research program entities of SRC. Celebrating 26 years of collaborative research for the semiconductor industry, SRC defines industry needs, invests in and manages the research that gives its members a competitive advantage in the dynamic global marketplace. Awarded the National Medal of Technology, America's highest recognition for contributions to technology, SRC expands the industry knowledge base and attracts premier students to help innovate and transfer semiconductor technology to the commercial industry. SRC also seeks to leverage funding from global government agencies. For more information, visit www.src.org.

4819 Emperor Blvd, Suite 300 Durham, NC 27703 Voice: (919) 941-9400 Fax: (919) 941-9450

Important Information for the SRC website. This site uses cookies to store information on your computer. By continuing to use our site, you consent to our cookies. If you are not happy with the use of these cookies, please review our Cookie Policy to learn how they can be disabled. By disabling cookies, some features of the site will not work.